Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 1 (2025)

Anion-Exchange Membrane Water Electrolysis: Synergistic Advances from Material Design to Device Integration

Submitted
October 17, 2025
Published
2025-11-06

Abstract

In the context of the global energy transition, wind and solar power have emerged as the primary sources of renewable energy. However, due to their reliance on natural conditions, their electricity generation is subject to fluctuations and intermittency, making large-scale and high-proportion grid integration challenging. This often results in surplus electricity. Hydrogen production through water electrolysis using this excess electricity plays a critical role in improving energy utilization efficiency. Among various water electrolysis technologies, anion exchange membrane water electrolysis (AEMWE) stands out as one of the most promising and cost-effective methods, owing to its high efficiency, the use of non-precious metal electrocatalysts, and extensive research. This paper reviews the recent advancements in the AEMWE field, highlighting improvements in membrane conductivity, a deeper understanding of degradation mechanisms, and emerging trends in electrocatalyst design. It systematically examines the key factors influencing AEMWE performance and explores the technological challenges and opportunities for its development. Finally, the paper offers valuable insights for the development of efficient and durable electrocatalysts and the advancement of AEMWE device fabrication.

References

  1. Sun, F.;Tang, Q.; Jiang, D.-e. Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction. ACS Catal. 2022, 12, 8404-8433. https://doi.org/10.1021/acscatal.2c02081
  2. Zhao, S.;Li, Z. X.;Guo, H. T.;Li, J.;Liu, Z. L.;Wang, P. F.;Wang, L. L.; Yi, T. F. Critical Role of Carbon Substrates in Optimizing Ru‐Based HER Catalysts: From Dimensional Insights to Metal‐Support Interactions Engineering. Adv. Funct. Mater. 2025, 25, e09799. https://doi.org/10.1002/adfm.202509799
  3. Jia, Y.;Zhang, Y.;Xu, H.;Li, J.;Gao, M.; Yang, X. Recent Advances in Doping Strategies to Improve Electrocatalytic Hydrogen Evolution Performance of Molybdenum Disulfide. ACS Catal. 2024, 14, 4601-4637. https://doi.org/10.1021/acscatal.3c05053
  4. Lang, C.;Xu, Y.; Yao, X. Perfecting HER catalysts via defects: Recent advances and perspectives. Chin. J. Catal. 2024, 64, 4-31. https://doi.org/10.1016/S1872-2067(24)60105-1
  5. Li, J.;Li, L.;Wang, J.;Cabot, A.; Zhu, Y. Boosting Hydrogen Evolution by Methanol Oxidation Reaction on Ni-Based Electrocatalysts: From Fundamental Electrochemistry to Perspectives. ACS Energy Lett. 2024, 9, 853-879. https://doi.org/10.1021/acsenergylett.3c02678
  6. Henkensmeier, D.;Cho, W.-C.;Jannasch, P.;Stojadinovic, J.;Li, Q.;Aili, D.; Jensen, J. O. Separators and Membranes for Advanced Alkaline Water Electrolysis. Chem. Rev. 2024, 124, 6393-6443. https://doi.org/10.1021/acs.chemrev.3c00694
  7. Wang, Y.;Yan, H.; Fu, H. Recent advances and modulation tactics in Ru- and Ir-based electrocatalysts for PEMWE anodes at large current densities. eScience 2025, 5, 100323. https://doi.org/10.1016/j.esci.2024.100323
  8. Feng, P.;Yang, K.;Liu, X.;Zhang, J.; Li, Z.-P. A review of advanced SOFCs and SOECs: materials, innovative synthesis, functional mechanisms, and system integration. eScience 2025, 5, 100460. https://doi.org/10.1016/j.esci.2025.100460
  9. Lu, Z.;Niu, W.;He, Y.;Jin, L.;Li, W.;Yang, X.;Sun, K.;Yan, Q.;Chen, J.;Zhang, J.;Shi, W.;Wei, C.;Li, Y.;Lu, H.; Zhang, B. Molybdate‐Leaching‐Induced Bimetallic Catalyst for Efficient Anion Exchange Membrane Water Electrolysis. Adv. Funct. Mater. 2025, 17, 2505626. https://doi.org/10.1002/adfm.202505626
  10. Son, Y. J.;Mirshekari, G.;Raaijman, S. J.; Corbett, P. J. Technology Landscape of Anion Exchange Membrane Water Electrolyzers: Where Are We Today? ACS Energy Lett. 2025, 10, 3058-3063. https://doi.org/10.1021/acsenergylett.5c01366
  11. Ma, W.;Morales-Vidal, J.;Tian, J.;Liu, M.-T.;Jin, S.;Ren, W.;Taubmann, J.;Chatzichristodoulou, C.;Luterbacher, J.;Chen, H. M.;López, N.; Hu, X. Encapsulated Co–Ni alloy boosts high-temperature CO2 electroreduction. Nature 2025, 641, 1156-1161. https://doi.org/10.1038/s41586-025-08978-0
  12. Chen, J.;Ma, Y.;Cheng, C.;Huang, T.;Luo, R.;Xu, J.;Wang, X.;Jiang, T.;Liu, H.;Liu, S.;Huang, T.;Zhang, L.; Chen, W. Cobalt-Doped Ru@RuO2 Core–Shell Heterostructure for Efficient Acidic Water Oxidation in Low-Ru-Loading Proton Exchange Membrane Water Electrolyzers. J. Am. Chem. Soc. 2025, 147, 8720-8731. https://doi.org/10.1021/jacs.4c18238
  13. Li, S.;Deng, L.;Hung, S. F.;Zhao, S.;Wang, L.;Hao, Y.;Long, Y.;Li, B.;Hsu, Y. H.;Chen, Y. Y.;Zhang, Y.;Chen, T. Y.;Hu, F.;Li, L.;Hu, Y.;Wu, Y.; Peng, S. Embedded Ir-Ru Single‐Atom Alloy with Self‐Limiting Motifs for Sustainable Proton Exchange Membrane Water Electrolysis. Adv. Mater. 2025, 17, e07340.
  14. Dai, M.;Zhao, D.; Wu, X. Research progress on transition metal oxide based electrode materials for asymmetric hybrid capacitors. Chin. Chem. Lett. 2020, 31, 2177-2188. https://doi.org/10.1016/j.cclet.2020.02.017
  15. Zhang, Q.;Hao, Y.;Chen, H.;Li, J.;Zeng, Y.;Xiong, J.;Cheng, Y.;Tricoli, A.; Li, F. Toward Energy‐Efficient Alkaline Water Electrolysis: Advances in Mass Transport Optimization and Electrolyzer Design. Adv. Energy Mater. 2025, 14, e04039. https://doi.org/10.1002/aenm.202504039
  16. Zou, W.;Tang, G.;Peng, K.;Mo, X.;Hu, T.;Yang, Z.; Xu, T. Quinuclidinium‐Based Microporous Anion Exchange Membranes for Water Electrolysis. Angew. Chem. Int. Ed. 2025, 7, e202514264. https://doi.org/10.1002/anie.202514264
  17. Yuan, Z.;Liu, Y.;Li, H.;Kong, Q.;Sun, H.;Qiao, Q.;Zhang, X.;Liu, H.;Tan, Y.;Ge, Q.;Xu, T.;Dai, X.; Zhang, X. Poly(terphenyl-diphenylmethane piperidinium) anion exchange membranes assemble with non-precious metal electrodes for high-performance water electrolysis. Sci. China Mater. 2025. https://doi.org/10.1007/s40843-025-3631-1
  18. Klingenhof, M.;Trzesniowski, H.;Koch, S.;Zhu, J.;Zeng, Z.;Metzler, L.;Klinger, A.;Elshamy, M.;Lehmann, F.;Buchheister, P. W.;Weisser, A.;Schmid, G.;Vierrath, S.;Dionigi, F.; Strasser, P. High-performance anion-exchange membrane water electrolysers using NiX (X = Fe,Co,Mn) catalyst-coated membranes with redox-active Ni–O ligands. Nat. Catal. 2024, 7, 1213-1222. https://doi.org/10.1038/s41929-024-01238-w
  19. Tian, C.;Liu, R.;Lv, Z.;Wang, C.;Liu, W.;Dong, F.;Feng, X.;Yang, W.; Wang, B. Heterogeneous Support Effects for Enhanced Performance in Anion Exchange Membrane Water Electrolysis. Adv. Energy Mater. 2025, 15, e01952. https://doi.org/10.1002/aenm.202501952
  20. Li, H.;Lin, Y.;Duan, J.;Wen, Q.;Liu, Y.; Zhai, T. Stability of electrocatalytic OER: from principle to application. Chem. Soc. Rev. 2024, 53, 10709-10740. https://doi.org/10.1039/D3CS00010A
  21. Zhang, L.;Qi, F.;Ren, R.;Gu, Y.;Gao, J.;Liang, Y.;Wang, Y.;Zhu, H.;Kong, X.;Zhang, Q.;Zhang, J.; Wu, L. Recent Advances in Green Hydrogen Production by Electrolyzing Water with Anion-Exchange Membrane. Research 2025, 8, 0677. https://doi.org/10.34133/research.0677
  22. Liu, Y.;Vijayakumar, P.;Liu, Q.;Sakthivel, T.;Chen, F.; Dai, Z. Shining Light on Anion-Mixed Nanocatalysts for Efficient Water Electrolysis: Fundamentals, Progress, and Perspectives. Nano-Micro Lett. 2022, 14, 43. https://doi.org/10.1007/s40820-021-00785-2
  23. Chen, Z.;Yang, M.;Li, Y.;Gong, W.;Wang, J.;Liu, T.;Zhang, C.;Hou, S.;Yang, G.;Li, H.;Jin, Y.;Zhang, C.;Tian, Z.;Meng, F.; Cui, Y. Termination-acidity tailoring of molybdenum carbides for alkaline hydrogen evolution reaction. Nat. Commun. 2025, 16, 418. https://doi.org/10.1038/s41467-025-55854-6
  24. Wang, L.-L.;Wang, X.-R.;Wang, H.-J.;Zhang, C.;Li, J.-J.;Feng, G.-J.;Cheng, X.-X.;Qin, X.-R.;Yu, Z.-Y.; Lu, T.-B. Tailoring Lewis Acidity of Metal Oxides on Nickel to Boost Electrocatalytic Hydrogen Evolution in Neutral Electrolyte. J. Am. Chem. Soc. 2025, 147, 7555-7563. https://doi.org/10.1021/jacs.4c16596
  25. Chen, Y.;Tang, Z.;Liu, Z.;Huang, W. H.;Yeh, M. H.;Pao, C. W.;Tao, H.;Xu, M.;Dong, Z.;Yuan, L.;Pu, M.;Li, B.;Yang, G.;Guo, Y.;Hu, Z.; Zhu, Y. Toward the Ideal Alkaline Hydrogen Evolution Electrocatalyst: a Noble Metal‐Free Antiperovskite Optimized with A‐Site Tuning. Adv. Mater. 2025, 37, 2504607. https://doi.org/10.1002/adma.202504607
  26. Xu, S.;Feng, S.;Yu, Y.;Xue, D.;Liu, M.;Wang, C.;Zhao, K.;Xu, B.; Zhang, J.-N. Dual-site segmentally synergistic catalysis mechanism: boosting CoFeSx nanocluster for sustainable water oxidation. Nat. Commun. 2024, 15, 1720. https://doi.org/10.1038/s41467-024-45700-6
  27. Chen, M.;Kitiphatpiboon, N.;Feng, C.;Abudula, A.;Ma, Y.; Guan, G. Recent progress in transition-metal-oxide-based electrocatalysts for the oxygen evolution reaction in natural seawater splitting: A critical review. eScience 2023, 3, 100111. https://doi.org/10.1016/j.esci.2023.100111
  28. Yue, K.;Lu, R.;Gao, M.;Song, F.; Dai, Y. Polyoxometalated metal-organic framework superstructure for stable water oxidation. Science 2025, 388, 430-436. https://doi.org/10.1126/science.ads1466
  29. Zheng, Y.;Serban, A.;Zhang, H.;Chen, N.;Song, F.; Hu, X. Anion Exchange Ionomers Enable Sustained Pure-Water Electrolysis Using Platinum-Group-Metal-Free Electrocatalysts. ACS Energy Lett. 2023, 8, 5018-5024. https://doi.org/10.1021/acsenergylett.3c01866
  30. Akay, Ö.;Monfort-Castillo, M.;St Francis, T.;Becker, J.;Saravanabavan, S.;Romero-Calvo, Á.; Brinkert, K. Magnetically induced convection enhances water electrolysis in microgravity. Nat. Chem. 2025. https://doi.org/10.1038/s41557-025-01890-0
  31. Xiong, H.;Zhuang, R.;Cheng, B.;Liu, D.;Du, Y.;Wang, H.;Liu, Y.;Xu, F.; Wang, H. Self‐Supported Metallic Alkaline Hydrogen Evolution Electrocatalysts Tolerant for Ampere‐Level Current Densities. Adv. Energy Mater. 2024, 15, 2404077. https://doi.org/10.1002/aenm.202404077
  32. Liu, X.;Chi, J.;Zhao, Y.;Huang, R.;Zhang, H.;Fu, J.;Ren, Z.;Han, Y.;Wei, T.;Song, W.;Yu, H.; Shao, Z. Achieving 2400+ Hours Pure Water‐Fed Electrolysis via Hydroxide Exchange Membrane‐Electrodes Interface Engineering. Adv. Energy Mater. 2025. https://doi.org/10.1002/aenm.202503388
  33. Song, W.;Ge, X.;Wu, L.;Yang, Z.; Xu, T. Bottlenecks of commercializing anion exchange membranes for energy devices. Joule 2025, 9, 102051. https://doi.org/10.1016/j.joule.2025.102051
  34. Miao, R. K.;Fan, M.;Wang, N.;Zhao, Y.;Li, F.;Liu, M.;Arabyarmohammadi, F.;Liang, Y.;Ni, W.;Xie, K.;Chen, Y.;Sun, P.;Huang, J. E.;Wu, J.;Kim, J.;O’Brien, C. P.;Xiao, Y. C.;Guo, Z.;Papangelakis, P.;Shayesteh Zeraati, A.;Xu, Y.;Dinh, C.-T.;Sargent, E. H.; Sinton, D. CO electrolysers with 51% energy efficiency towards C2+ using porous separators. Nat. Energy 2025. https://doi.org/10.1038/s41560-025-01846-1
  35. Zhao, D.;Liu, X.;Zhang, W. c.;Wu, X.; Cho, Y. R. Highly Efficient and Stable Mo‐CoP3@FeOOH Electrocatalysts for Alkaline Seawater Splitting. Small Methods 2023, 8, 2301474. https://doi.org/10.1002/smtd.202301474
  36. Nie, Y.;Fan, L.;Mao, J.;Pan, J.;Hu, C.;Zhu, A.;Hong, Y.;Xie, Z.; Zhang, Q. Effects of cationic groups on poly(biphenyl alkylene)-based anion-exchange membranes for water electrolyzer. J. Membr. Sci. 2025, 735, 124556. https://doi.org/10.1016/j.memsci.2025.124556
  37. Jin, W.;Kim, E. H.;Lee, S.;Yu, S.;Han, H.;Kim, G.;Lee, S. W.;Jang, J.;Lee, C. E.;Shim, W.; Park, C. Tandem Interactive Sensing Display De‐Convoluting Dynamic Pressure and Temperature. Adv. Funct. Mater. 2021, 31, 2010492. https://doi.org/10.1002/adfm.202010492
  38. Zhang, H.;He, X.;Feng, H.;Li, C.; Li, M. A poly(binaphthyl-co-terphenyl quinuclidinium) anion exchange membrane with excellent alkaline stability and anion conductivity. J. Mater. Chem. A 2024, 12, 23570-23576. https://doi.org/10.1039/D4TA03241A
  39. Li, J.;Li, W.;Wang, X.;Pan, D.;Sa, R.;Xiao, M.;Liu, C.;Xing, W.; Zhu, J. A microphase separation anion exchange membrane based on poly(terphenyl piperidinium)/cationic polyelectrolyte for high-performance AEMWEs. J. Membr. Sci. 2025, 730, 124206. https://doi.org/10.1016/j.memsci.2025.124206
  40. Ma, L.; Wang, T. Rational Understanding Hydroxide Diffusion Mechanism in Anion Exchange Membranes during Electrochemical Processes with RDAnalyzer. Angew. Chem. Int. Ed. 2024, 63, e202403614. https://doi.org/10.1002/anie.202403614
  41. Wu, D.;Zhang, N.;Gao, W.;Li, Q.;Gao, X.;Wang, S.; Che, Q. Novel anion-exchange membranes with accelerated hydroxide ion conduction through a quaternized covalent organic framework-doped electrospinning binary polymer. J. Mater. Chem. A 2024, 12, 28805-28817. https://doi.org/10.1039/D4TA04614E
  42. Liu, W.;Geng, Z.;Guo, S.;Liu, L.;Zhao, L.;Qu, C.;Xia, Q.;Cai, H.;Zhao, X.;Zhu, J.;Chen, J.;Jin, L.; Zhang, C. Hydrogen‐Bonding Enhanced Anion Exchange Membrane for High Performance Alkaline Water Electrolysis. Adv. Energy Mater. 2025, 1, e03110. https://doi.org/10.1002/aenm.202503110
  43. Wang, C.;Wang, T.;Chen, D.;Ling, Q.;Liu, C.;Li, X.;Wei, H.; Ding, Y. Insights into the Alkaline Stability of Poly(arylene piperidinium)s. Macromolecules 2025, 58, 8335-8343. https://doi.org/10.1021/acs.macromol.5c01603
  44. Liu, H.;Zhao, D.;Dai, M.;Zhu, X.;Qu, F.;Umar, A.; Wu, X. PEDOT decorated CoNi2S4 nanosheets electrode as bifunctional electrocatalyst for enhanced electrocatalysis. Chem. Eng. J. 2022, 428, 131183. https://doi.org/10.1016/j.cej.2021.131183
  45. Nguyen, T. D.;Yeo, D.;Chitumalla, R. K.;Kim, S. J.;Jeong, G. H.;Kwun, D. G.;Jang, J.;Jung, I. H.; Seo, J. Y. Tailor‐Made Buffer Materials: Advancing Uniformity and Stability in Perovskite Solar Cells. Adv. Energy Mater. 2024, 15, 2403633. https://doi.org/10.1002/aenm.202403633
  46. Pan, D.;Chen, S.; Jannasch, P. Alkali-Stable Anion Exchange Membranes Based on Poly(xanthene). ACS Macro Lett. 2022, 12, 20-25. https://doi.org/10.1021/acsmacrolett.2c00672
  47. Willdorf-Cohen, S.;Zhegur-Khais, A.;Ponce-González, J.;Bsoul-Haj, S.;Varcoe, J. R.;Diesendruck, C. E.; Dekel, D. R. Alkaline Stability of Anion-Exchange Membranes. ACS Appl. Energy Mater. 2023, 6, 1085-1092. https://doi.org/10.1021/acsaem.2c03689
  48. Yang, Y.;Pang, D.;Wang, C.;Fu, Z.;Liu, N.;Liu, J.;Wu, H.;Jia, B.;Guo, Z.;Fan, X.; Zheng, J. Vacancy and Dopant Co‐Constructed Active Microregion in Ru–MoO3−x/Mo2AlB2 for Enhanced Acidic Hydrogen Evolution. Angew. Chem. Int. Ed. 2025, 64. https://doi.org/10.1002/anie.202504084
  49. Qiu, L.;Tian, F.;He, L.;Li, M.;Lin, F.;Li, L.;Ren, X.;Wu, F.;Li, L.;Zhang, T.;Sheng, J.;Yu, Y.;Yang, W.; Guo, S. Robust Interfacial Hydrogen‐Bond Network on Positively Charged Ru‐N‐Ni Dual Sites Boosts Alkaline Hydrogen Electrocatalysis. Adv. Mater. 2025, 22, e12568. https://doi.org/10.1002/adma.202512568
  50. Hou, L.;Li, Z.;Jang, H.;Kim, M. G.;Cho, J.;Zhong, W.;Liu, S.; Liu, X. Partially Interstitial Silicon‐Implanted Ruthenium as an Efficient Electrocatalyst for Alkaline Hydrogen Evolution. Angew. Chem. Int. Ed. 2025, 64, e202423756. https://doi.org/10.1002/anie.202423756
  51. Zhao, K.;Xiang, N.;Wang, Y.-Q.;Ye, J.;Jin, Z.;Fu, L.;Chang, X.;Wang, D.;Xiao, H.; Xu, B. A molecular design strategy to enhance hydrogen evolution on platinum electrocatalysts. Nat. Energy 2025, 10, 725-736. https://doi.org/10.1038/s41560-025-01754-4
  52. Li, R.;Zhao, H.;Wang, L.;Zhou, Q.;Yang, X.;Jiang, L.;Luo, X.;Yu, J.;Wei, J.; Mu, S. Strengthened d–p orbital hybridization and hydrogen diffusion in a hollow N-doped porous carbon/Ru cluster catalyst system for hydrogen evolution reactions. Chem. Sci. 2025, 16, 4383-4391. https://doi.org/10.1039/D4SC08498E
  53. Qin, Q.;Jang, H.;Jiang, X.;Wang, L.;Wang, X.;Kim, M. G.;Liu, S.;Liu, X.; Cho, J. Constructing Interfacial Oxygen Vacancy and Ruthenium Lewis Acid–Base Pairs to Boost the Alkaline Hydrogen Evolution Reaction Kinetics. Angew. Chem. Int. Ed. 2023, 63, e202317622. https://doi.org/10.1002/anie.202317622
  54. Jiang, Y.;Qiu, P.;Liu, Q.;Li, P.; Chen, S. Electric-Double-Layer Mechanism of Surface Oxophilicity in Regulating the Alkaline Hydrogen Electrocatalytic Kinetics. J. Am. Chem. Soc. 2025, 147, 14122-14130. https://doi.org/10.1021/jacs.4c14511
  55. Xu, P.;von Rueden, A. D.;Schimmenti, R.;Mavrikakis, M.; Suntivich, J. Optical method for quantifying the potential of zero charge at the platinum–water electrochemical interface. Nat. Mater. 2023, 22, 503-510. https://doi.org/10.1038/s41563-023-01474-8
  56. Jin, H.;Chen, X.;Da, Y.;Fan, L.;Jiang, R.;Xiao, Y.;Yao, B.;He, Q.;Yu, Y.; Chen, W. Identifying the Bifunctional Mechanism in Alkaline Water Electrolysis by Lewis Pairs at the Single-Atom Scale. J. Am. Chem. Soc. 2025, 147, 3874-3884. https://doi.org/10.1021/jacs.4c18040
  57. Yang, Y.;Dong, M.;Wu, Q.;Qin, C.;Chen, W.;Geng, Y.;Wu, S.;Sun, C.;Shao, K.;Su, Z.; Wang, X. In‐Situ Growth of Metallocluster Inside Heterometal‐Organic Cage to Switch Electron Transfer for Targeted CO2 Photoreduction. Angew. Chem. Int. Ed. 2025, 64, e202423018. https://doi.org/10.1002/anie.202423018
  58. Zhang, J.;Wan, Z.;Bu, X.;Fan, H.;Lou, H.;Gao, J.;Wen, D.; Gao, W. Electronic Interaction Enables Pt Nanoparticles on N‐Doped Porous Carbon Aerogel as Efficient Electrocatalysts for Alkaline Hydrogen Evolution Reaction. Small 2025, 21, e06453. https://doi.org/10.1002/smll.202506453
  59. Fan, H.;Wan, X.;Sun, S.;Zhou, X.;Bu, X.;Ye, J.;Bai, R.;Lou, H.;Chen, Y.;Gao, J.;Zhang, J.;Gao, W.; Wen, D. Revealing the Role of Ru‐O‐Ce Interface Coupling in CeO2‐Ru Aerogel for Boosting Hydrogen Evolution Kinetics. Adv. Energy Mater. 2025, 15, 2405681. https://doi.org/10.1002/aenm.202405681
  60. Cui, W. G.;Ren, X.;Wang, S.;Zhang, Y.;Li, Z.;Wang, K.;Gao, F.;Shen, Z.;Liu, Y.;Wang, X.;Wu, Z.;Yang, Y.;Wang, D.; Pan, H. Modulating the Structure of Interfacial Water via Oxygen‐Coordinated Tungsten Single‐Atom on Nickel Sulfide Slab to Boost Alkaline Hydrogen Evolution. Adv. Energy Mater. 2025, 1, e03257. https://doi.org/10.1002/aenm.202503257
  61. Li, P.;Jiang, Y.-L.;Men, Y.;Jiao, Y.-Z.; Chen, S. Kinetic cation effect in alkaline hydrogen electrocatalysis and double layer proton transfer. Nat. Commun. 2025, 16, 1844. https://doi.org/10.1038/s41467-025-56966-9
  62. Li, Z.;Lin, Y.;Garaga, M. N.;Greenbaum, S. G.;Liao, M.;Ruan, J.;Li, Q.;Li, Y.;Sun, D.;Xu, K.;Fang, F.; Wang, F. Quantitative and mechanistic insights into proton dynamics for fast energy storage. Nat. Mater. 2025, 10.1038/s41563-025-02366-9. Wu, B.;Qi, K.;Petit, T.;Zhang, F.;Xu, Z. J.; Fu, H. Modulation of Interfacial Water at Gas–Liquid–Solid Interface for Water Electrolysis. Angew. Chem. Int. Ed. 2025, 1, e202507327.
  63. Li, C.-Y.;Le, J.-B.;Wang, Y.-H.;Chen, S.;Yang, Z.-L.;Li, J.-F.;Cheng, J.; Tian, Z.-Q. In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 2019, 18, 697-701. https://doi.org/10.1038/s41563-019-0356-x
  64. Yang, C.;Gao, Y.;Xing, Z.;Shu, X.;Zhuang, Z.;Wang, Y.;Zheng, Y.;Li, S.;Cheng, C.;Wang, D.; Zhang, J. Bioinspired Sulfo oxygen bridges optimize interfacial water structure for enhanced hydrogen oxidation and evolution reactions. Nat. Commun. 2025, 16, 6459. https://doi.org/10.1038/s41467-025-61871-2
  65. Yue, K.;Lu, R.;Gao, M.; Song, F. Polyoxometalated metal-organic framework superstructure for stable water oxidation. Science 2025, 388, 430-436. https://doi.org/10.1126/science.ads1466
  66. Li, L.-J.;He, Y.;Yang, Y.;Guo, J.;Lu, Z.;Wang, C.;Zhu, S.; Zhu, S.-F. Recent Advances in Mn, Fe, Co, and Ni-Catalyzed Organic Reactions. CCS Chem. 2024, 6, 537-584. https://doi.org/10.31635/ccschem.023.202303412
  67. Dong, H.;Jiang, J.;Xie, S.;Lin, C.;Wei, P.;Zhang, X.;Hu, P.;Iwuoha, E. I.; Peng, X. Transition metal phosphides for efficient hydrogen evolution: Synthesis, multiscale regulation, and industrial prospects. Appl. Energy 2025, 400, 126550. https://doi.org/10.1016/j.apenergy.2025.126550
  68. Liu, G.;Ding, L.;Meng, Y.;Ali, A.;Zuo, G.;Meng, X.;Chang, K.;Li, O. L.; Ye, J. A review on ultra‐small undoped MoS2 as advanced catalysts for renewable fuel production. Carbon Energy 2024, 6, e521. https://doi.org/10.1002/cey2.521
  69. Pi, C.;Li, X.;Zhang, X.;Song, H.;Zheng, Y.;Gao, B.;Kızılaslan, A.;Chu, P. K.; Huo, K. In‐Plane Mott–Schottky Effects Enabling Efficient Hydrogen Evolution from Mo5N6‐MoS2 Heterojunction Nanosheets in Universal‐pH Electrolytes. Small 2022, 18, 2201137. https://doi.org/10.1002/smll.202201137
  70. Wan, R.;Yuan, T.;Wang, L.;Li, B.;Liu, M.; Zhao, B. Earth-abundant electrocatalysts for acidic oxygen evolution. Nat. Catal. 2024, 7, 1288-1304. https://doi.org/10.1038/s41929-024-01266-6
  71. Li, Z.;Li, B.;Yu, M.;Yu, C.; Shen, P. Amorphous metallic ultrathin nanostructures: A latent ultra-high-density atomic-level catalyst for electrochemical energy conversion. Int. J. Hydrogen Energy 2022, 47, 26956-26977. https://doi.org/10.1016/j.ijhydene.2022.06.049
  72. Lu, X.;Yan, K.;Yu, Z.;Wang, J.;Liu, R.;Zhang, R.;Qiao, Y.; Xiong, J. Transition metal phosphides: synthesis nanoarchitectonics, catalytic properties, and biomass conversion applications. ChemSusChem 2024, 17, e202301687. https://doi.org/10.1002/cssc.202301687
  73. Liu, X.;He, Z.;Ajmal, M.;Shi, C.;Gao, R.;Pan, L.;Huang, Z.-F.;Zhang, X.; Zou, J.-J. Recent Advances in the Comprehension and Regulation of Lattice Oxygen Oxidation Mechanism in Oxygen Evolution Reaction. Trans. Tianjin Univ. 2023, 29, 247-253. https://doi.org/10.1007/s12209-023-00364-z
  74. Hu, E.;Feng, Y.;Nai, J.;Zhao, D.;Hu, Y.; Lou, X. W. Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy Environ. Sci. 2018, 11, 872-880. https://doi.org/10.1039/C8EE00076J
  75. Roy, A.;Kumar, S.;Guilherme Buzanich, A.;Prinz, C.;Götz, E.;Retzmann, A.;Hickel, T.;Bhattacharya, B.; Emmerling, F. Synergistic Catalytic Sites in High‐Entropy Metal Hydroxide Organic Framework for Oxygen Evolution Reaction. Adv. Mater. 2024, 36, 2408114. https://doi.org/10.1002/adma.202408114
  76. Yao, Y.;Zhao, G.;Guo, X.;Xiong, P.;Xu, Z.;Zhang, L.;Chen, C.;Xu, C.;Wu, T.-S.;Soo, Y.-L.;Cui, Z.;Li, M. M.-J.; Zhu, Y. Facet-Dependent Surface Restructuring on Nickel (Oxy)hydroxides: A Self-Activation Process for Enhanced Oxygen Evolution Reaction. J. Am. Chem. Soc. 2024, 146, 15219-15229. https://doi.org/10.1021/jacs.4c02292
  77. Qian, Z.-X.;Liang, G.-H.;Shen, L.-F.;Zhang, G.;Zheng, S.;Tian, J.-H.;Li, J.-F.; Zhang, H. Phase Engineering Facilitates O–O Coupling via Lattice Oxygen Mechanism for Enhanced Oxygen Evolution on Nickel–Iron Phosphide. J. Am. Chem. Soc. 2024, 147, 1334-1343. https://doi.org/10.1021/jacs.4c15847
  78. Wang, X.;Zhong, H.;Xi, S.;Lee, W. S. V.; Xue, J. Understanding of Oxygen Redox in the Oxygen Evolution Reaction. Adv. Mater. 2022, 34, 2107956. https://doi.org/10.1002/adma.202107956
  79. Zhang, T.;Zhao, H.-F.;Chen, Z.-J.;Yang, Q.;Gao, N.;Li, L.;Luo, N.;Zheng, J.;Bao, S.-D.;Peng, J.;Peng, X.;Liu, X.-W.; Yu, H.-B. High-entropy alloy enables multi-path electron synergism and lattice oxygen activation for enhanced oxygen evolution activity. Nat. Commun. 2025, 16, 3327. https://doi.org/10.1038/s41467-025-58648-y
  80. Li, L.;Lin, C.;Ma, X.;Ma, Y.;Zhu, A.;Xie, Z.; Zhang, Q. Rational design of membrane electrode assembly for durable anion exchange membrane water electrolysis. Chem. Eng. J. 2025, 508, 160916. https://doi.org/10.1016/j.cej.2025.160916
  81. Zhou, W.;Huang, Y.;Cai, H.;Wang, T.;Li, H.;Zhang, C.;Zhao, L.;Chen, L.;Liao, M.;Tang, Z.;Chen, K.;Gu, J.;Gao, W.;Fan, Z.; Wen, Z. A Strongly Coupled Cluster Heterostructure with Pt–N-Mo Bonding for Durable and Efficient H2 Evolution in Anion-Exchange Membrane Water Electrolyzers. Nano-Micro Lett. 2025, 17, 296. https://doi.org/10.1007/s40820-025-01798-x
  82. Fan, S.;Yao, R.;Niu, Y.;Yao, J.;Sun, Y.;Li, J.; Liu, G. Ultralow-loading Ru clusters on S-doped Co3O4 for synergistic multi-site electrocatalysis toward industrial-current AEMWE hydrogen evolution. Appl. Catal. B: Environ. 2026, 382, 126023. https://doi.org/10.1016/j.apcatb.2025.126023
  83. Shirwalkar, A.;Kaur, M.;Zhong, S.;Pupucevski, M.;Hu, K.;Yan, Y.;Lattimer, J.; McKone, J. Comparing Intrinsic Catalytic Activity and Practical Performance of Ni- and Pt-Based Alkaline Anion Exchange Membrane Water Electrolyzer Cathodes. ACS Energy Lett. 2025, 10, 1779-1785. https://doi.org/10.1021/acsenergylett.5c00439
  84. Guo, D.;Shi, Z.;El‐Demellawi, J. K.;Wahyudi, W.;Arsalan, M.;Zhang, H.; Alshareef, H. N. Lithium Metal Batteries for High Temperature Environments. Adv. Energy Mater. 2025, 1, e02943. https://doi.org/10.1002/aenm.202502943
  85. Xiao, X.;Li, Z.;Xiong, Y.; Yang, Y.-W. IrMo Nanocluster-Doped Porous Carbon Electrocatalysts Derived from Cucurbit[6]uril Boost Efficient Alkaline Hydrogen Evolution. J. Am. Chem. Soc. 2023, 145, 16548-16556. https://doi.org/10.1021/jacs.3c03489
  86. Li, S.;Liu, W.;Shi, Y.;Wang, T.;Liu, T.;Xue, X.;Li, R.;Qiao, M.;Wu, Z.-Y.; Zhang, W. Ligand-rich oxygen evolution electrocatalysts reconstructed from metal-organic frameworks for anion-exchange membrane water electrolysis. Sci. Bull. 2025, 70, 1976-1985. https://doi.org/10.1016/j.scib.2025.04.037
  87. Huang, J.;Wang, H.;Huang, X.;Wang, L.;Chang, Y.;Gao, Y.;Du, Y.; Wang, B. Integrating Machine Learning Insights in Membrane Electrode Assembly for CO2 Electrolysis. Adv. Funct. Mater. 2025, 12, e18997. https://doi.org/10.1002/adfm.202518997
  88. Huang, L.; Qi, R. Electrochemical and operation performance of electrolytic air dehumidification with different catalyst coated membrane methods. Int. J. Green Energy 2022, 20, 934-945. https://doi.org/10.1080/15435075.2022.2126942
  89. Lim, B. H.;Majlan, E. H.;Tajuddin, A.;Husaini, T.;Wan Daud, W. R.;Mohd Radzuan, N. A.; Haque, M. A. Comparison of catalyst-coated membranes and catalyst-coated substrate for PEMFC membrane electrode assembly: A review. Chin. J. Chem. Eng. 2021, 33, 1-16. https://doi.org/10.1016/j.cjche.2020.07.044
  90. Ito, H.;Miyazaki, N.;Sugiyama, S.;Ishida, M.;Nakamura, Y.;Iwasaki, S.;Hasegawa, Y.; Nakano, A. Investigations on electrode configurations for anion exchange membrane electrolysis. J. Appl. Electrochem. 2018, 48, 305-316. https://doi.org/10.1007/s10800-018-1159-5
  91. Baibars, I. O.;Huang, H.;Xiao, Y.;Wang, S.;Nie, Y.;Jia, C.;Dastafkan, K.; Zhao, C. Efficient hydrogen evolution at Ni/CeOx interfaces in anion-exchange membrane water electrolysers. Energy Environ. Sci. 2025, 18, 6248-6259. https://doi.org/10.1039/D4EE06113F
  92. Zhai, T.;Wang, H.;Beaudoin, S. R.;Zhang, R.;Kwak, M.;Hou, S.;Guo, Z.; Boettcher, S. W. Perovskite Catalysts for Pure-Water-Fed Anion-Exchange-Membrane Electrolyzer Anodes: Co-design of Electrically Conductive Nanoparticle Cores and Active Surfaces. J. Am. Chem. Soc. 2025, 147, 15448-15458. https://doi.org/10.1021/jacs.5c01621
  93. Xu, G.;Xing, M.;Qiao, Z.;Han, M.;Wu, Y.;Wang, S.; Cao, D. Constructing Ultra‐Stable Electrocatalysts to Achieve Adaptability of Industrial‐Level Alkaline Water Electrolyzers for Fluctuating Renewable Energies. Adv. Energy Mater. 2025, 15, 2500926. https://doi.org/10.1002/aenm.202500926
  94. Shen, H.;Gao, F.-Y.;Li, H.;Xu, J.;Jaroniec, M.;Zheng, Y.; Qiao, S.-Z. Durable Anion Exchange Membrane Water Electrolysis in Low-Alkaline Concentration Electrolyte. J. Am. Chem. Soc. 2025, 147, 22677-22685. https://doi.org/10.1021/jacs.5c04194
  95. Miller, H. A. Green hydrogen from anion exchange membrane water electrolysis. Curr. Opin. Electrochem. 2022, 36, 101122. https://doi.org/10.1016/j.coelec.2022.101122
  96. Zhao, J.;Wang, K.;Li, X.;Li, X.;Cui, X.; Zhao, X. Localizing the Long‐Range Disorder of Reconstructed Cobalt Oxyhydroxides for Anion Exchange Membrane Water Electrolysis. Angew. Chem. Int. Ed. 2025, 12, e202513592. https://doi.org/10.1002/anie.202513592
  97. Yanagi, R.;Yang, P.;Tricker, A. W.;Chen, Y.;Scott, M. C.;Berlinger, S. A.;Zenyuk, I. V.; Peng, X. Enhancing water and oxygen transport through electrode engineering for AEM water electrolyzers. Joule 2025, 9, 102001. https://doi.org/10.1016/j.joule.2025.102001
  98. Lin, G.;Dong, A.;Li, Z.;Li, W.;Cao, X.;Zhao, Y.;Wang, L.; Sun, L. An Interlayer Anchored NiMo/MoO2 Electrocatalyst for Hydrogen Evolution Reaction in Anion Exchange Membrane Water Electrolysis at High Current Density. Adv. Mater. 2025, 37, 2507525. https://doi.org/10.1002/adma.202507525
  99. Mao, J.;Liang, J.;Li, Y.;Liu, X.;Ma, F.;Liu, S.;Ouyang, H.;Cai, Z.;Wang, T.;Zhao, Y.;Huang, Y.; Li, Q. Electrochemical Lithiation Regulates the Active Hydrogen Supply on Ru–Sn Nanowires for Hydrogen Evolution Toward the High-Performing Anion Exchange Membrane Water Electrolyzer. J. Am. Chem. Soc. 2025, 147, 7711-7720. https://doi.org/10.1021/jacs.4c17373
  100. Ding, S.;Li, Z.;Lin, G.;Ding, Y.;Wang, L.; Sun, L. Post‐Selenium‐Leaching Induced Fast Micro‐Bubble Detachment on Nickel‐Iron‐Based OER Catalyst for Efficient AEM‐WE. Angew. Chem. In. Ed. 2025, 1, e202517132. https://doi.org/10.1002/anie.202517132
  101. Zheng, X.;Zheng, X.;Gao, M.;Liu, Y.;Pan, H.; Sun, W. Platinum‐Nickel Oxide Cluster‐Cluster Heterostructure Enabling Fast Hydrogen Evolution for Anion Exchange Membrane Water Electrolyzers. Angew. Chem. In. Ed. 2025, 64, e202422062. https://doi.org/10.1002/anie.202422062
  102. Li, S.;Liu, T.;Zhang, W.;Wang, M.;Zhang, H.;Qin, C.;Zhang, L.;Chen, Y.;Jiang, S.;Liu, D.;Liu, X.;Wang, H.;Luo, Q.;Ding, T.; Yao, T. Highly efficient anion exchange membrane water electrolyzers via chromium-doped amorphous electrocatalysts. Nat. Commun. 2024, 15, 3416. https://doi.org/10.1038/s41467-024-47736-0
  103. Wang, H.;Wang, X.;Gao, F.;Chen, J.;Ren, X.;Shen, Z.;Wang, K.;Qi, F.;Liu, Y.;Gao, Y.;Yang, Y.;Wang, D.;Li, Z.;Cui, W.; Pan, H. Synergistic Catalysis of Pt‐Based High‐Entropy Clusters Coupled with Super‐Hydrophilic CeO2 Enables Efficient Anion Exchange Membrane Water Electrolysis. Adv. Mater. 2025, 12, e14269. https://doi.org/10.1002/adma.202514269
  104. Jiang, T.;Jiang, X.;Jiang, C.;Wang, J.;Danlos, Y.;Liu, T.;Deng, C.;Chen, C.;Liao, H.; Kyriakou, V. Novel Fe‐Modulating Raney‐Ni Electrodes toward High‐Efficient and Durable AEM Water Electrolyzer. Adv. Energy Mater. 2025, 1, 2501634. https://doi.org/10.1002/aenm.202501634
  105. Cong, L.;Tang, C.;Li, X.;He, W.;Wang, C.;Angelica, E.; Zhang, Q. Li‐Doping and Pyrolysis Engineered Robust Anode for Intermittency‐Resilient AEM Electrolysis. Adv. Energy Mater. 2025, 12, e04707. https://doi.org/10.1002/aenm.202504707
  106. Malhotra, D.;Devi, T. A.;Nguyen, T. H.;Dinh, V. A.;Kim, N. H.;Tran, D. T.; Lee, J. H. Realizing tailored catalytic performance on ternary FeP-Ni5P4-CoP in-situ confined Prussian blue analogue framework for anion exchange membrane water electrolysis. J. Colloid Inter. Science 2026, 703, 139276. https://doi.org/10.1016/j.jcis.2025.139276
  107. Zhang, J.;Tu, Y.;Xu, X.;Ke, J.;Zhang, L.;Zhong, C.;Zhang, Y.;Du, L.;Jiang, S. P.;Shao, Z.; Cui, Z. A High‐entropy Antiperovskite Nitride Enables Efficient Anion Exchange Membrane Water Electrolysis. Adv. Mater. 2025, 37, 2509042. https://doi.org/10.1002/adma.202509042
  108. Zhang, T.;Lin, S. a.;Liu, H.;Dong, Y.;Kang, X.;Hu, S.;Li, S.;Zhang, Z.;Yu, Q.; Liu, B. An Ionomer‐Free Gapless Catalyst‐Bridging Membrane Electrode Assembly for High‐Performance Pure Water‐Fed Anion Exchange Membrane Electrolyzer. Adv. Mater. 2025, 12, e09805. https://doi.org/10.1002/adma.202509805