Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 1 (2025)

Investigation of Structural Stability, Morphology, and Optical Properties of Lead Sulfide Quantum Dots Under the Influence of Acoustic Shock Waves

Submitted
November 18, 2025
Published
2025-12-08

Abstract

Lead sulfide (PbS), due to its high performance, is an interesting semiconducting material for solar cell applications. In this study, the synthesis of PbS by the co-precipitation route was adopted due to a low-cost synthesis procedure. The powder X-ray diffraction (PXRD) technique and Rietveld refinement revealed PbS with a face-centered cubic structure. The optical properties are widely studied using absorption and photoluminescence studies. To check the stability of the sample under high-pressure conditions, acoustic shock waves are imposed on the PbS NPs, and their stability is analyzed under various shockwave-loaded conditions. The impact of acoustic shock waves upon the quantum dots (QDs) is one of the fascinating ideas for active research in material science. The stability of PbS QDs was examined through multiple characterization techniques such as PXRD, HRTEM, SAED, FESEM, EDAX, UV-Visible-NIR spectroscopy, and photoluminescence (PL) for shock-exposed conditions. Our findings reveal that PbS QDs show no significant changes in crystallographic structure and showcase the possibility of bandgap tuning under the high-pressure acoustic shockwaves of 0.59 MPa in the counts of 200 & 400 shock pulses with a 1.5 Mach number. PbS QDs show shockwaves under the impact of acoustic shockwaves, and it may pave the way for suitable applications in fabricating tandem heterojunction solar cells.

References

  1. Sivakumar, A., Ramya, S., Dhas, S. S. J., Almansour, A. I., Kumar, R. S., Arumugam, N.,& Dhas, S. M. B. Assessment of crystallographic and electronic phase stability of shock wave loaded cubic cerium oxide nanoparticles, Ceramics International, (2022), 48(2), 1963-1968. https://doi.org/10.1016/j.ceramint.2021.09.281
  2. Koteeswara Reddy, N., Jayaram, V., Arunan, E., Kwon, Y.B., Moon, W.J., Reddy, K.P.J.: Investigations on high enthalpy shock wave exposed graphitic carbon nano particles. Diam. Relat. Mater. 2013, 35, 53-57, https://doi.org/10.1016/j.diamond.2013.03.005
  3. P. Onufrijevs, A. Medvids, E. Daukšta, H. Mimura, M. Andrulevicius, N. Berezovska, I. Dmitruk, L. Grase, G. Mežinskis, The effect of UV Nd:YAG laser radiation on the optical and electrical properties of hydrothermal ZnO crystal, Optics and Laser Technology, 2016, Vol.86, 21.-25. https://doi.org/10.1016/j.optlastec.2016.06.009
  4. Ulvestad A, Welland MJ, Cha W, Liu Y, Kim JW, Harder R, Maxey E, Clark JN, Highland MJ, You H, Zapol P, Hruszkewycz SO, Stephenson GB. Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation. Nature. Mater. 2017, 16, 565-571. https://doi.org/10.1038/nmat4842
  5. A. Sivakumar, P. Eniya, S. Sahaya Jude Dhas, Raju Suresh Kumar, Abdulrahman I. Almansour, Kundan Sivashanmugan, J. Kalyana Sundar and S. A. Martin Britto Dhas, Shock wave induced phase transition from crystalline to the amorphous state of lead nitrate crystals, Cryst. Eng. Comm, 2022, 24, 52. https://doi.org/10.1039/D1CE01366A
  6. A. Sivakumar, S. Sahaya Jude Dhas and S. A. Martin Britto Dhas, Assessment of crystallographic and magnetic phase stabilities on MnFe2O4 nano crystalline materials at shocked conditions, Solid.State.Sci., 2020, 107, 106340-106345. https://doi.org/10.1016/j.solidstatesciences.2020.106340
  7. A. Rita, A. Sivakumar and S. A. Martin Britto Dhas, Influence of shock waves on structural and morphological properties of copper oxide NPs for aerospace applications, J. Nanostruct. Chem., 2019, 9, 225-230. https://doi.org/10.1007/s40097-019-00313-0
  8. A. Rita, A. Sivakumar, S. Sahaya Jude Dhas and S. A. Martin Britto Dhas, Structural, optical and magnetic properties of silver oxide (AgO) nanoparticles at shocked conditions, J. Nanostruct. Chem., 2020, 10, 309-316. https://doi.org/10.1007/s40097-020-00351-z
  9. V. Jayaram and K. P. J. Reddy, Experimental study of the effect of strong shock heated test gases with cubic zirconia, Adv. Mater. Lett., 2016, 7, 100-150. https://doi.org/10.5185/amlett.2017.6379
  10. A. Rita, A. Sivakumar and S. A. Martin Britto Dhas, Investigation of Structural and Magnetic Phase Behaviour of Nickel Oxide Nanoparticles under Shock Wave Recovery Experiment, J. Supercond. Novel Magn., 2020, 1, 1-5.
  11. S. Kalaiarasi, A. Sivakumar, S. A. Martin Britto Dhas and M. Jose, Shock wave induced anatase to rutile TiO2 phase transition using pressure driven shock tube,Mater. Lett., 2018, 219, 72-75. https://doi.org/10.1016/j.matlet.2018.02.064
  12. A. Sivakumar, S. Soundarya, S. Sahaya Jude Dhas, K. Kamala Bharathi and S. A. Martin Britto Dhas, Shock Wave Driven Solid State Phase Transformation of Co3O4 to CoO Nanoparticles, J. Phys. Chem. C, 2020, 124, 10755-10763. https://doi.org/10.1021/acs.jpcc.0c02146
  13. A Rita, A Sivakumar, M Jose and S A Martin Britto Dhas, Shock wave recovery studies on structural and magnetic properties of α—Fe2O3 NPs, Mater. Res. Express 2019,6, 095035. https://doi.org/10.1016/j.cplett.2013.07.044
  14. K. Vasu, H.S.S.R. Matte, Sharmila N. Shirodkar, V. Jayaram, K.P.J. Reddy, Umesh V. Waghmare, C.N.R. Rao, Effect of high-temperature shock-wave compression on few-layer MoS2, WS2 and MoSe2, Chem. Phys. Lett. 582 (2013) 105-109.
  15. Sivakumar Aswathappa, Lidong Dai, Sahaya Jude Dhas Sathiyadhas, Martin Britto Dhas Sathiyadhas Amalapushpam, Muthuvel Vijaya, Raju Suresh Kumar, Abdulrahman I. Almansour, Acoustic shock wave recovery experiments on cubic zinc sulfide nanoparticles for electrical and magnetic switches applications, Ceramics International, 2024, 50,7418-7430, https://doi.org/10.1016/j.ceramint.2023.12.028
  16. S. Oviya, F. Irine Maria Bincy, S.A. Martin Britto Dhas, Raju Suresh Kumar, P. Kannappan, Ikhyun Kim, Tuning the band gap of bismuth sulfide via acoustic shock waves to harness the full visible spectrum for enhanced solar cell applications, Materials Chemistry and Physics, 2025, 333, 130287. https://doi.org/10.1016/j.matchemphys.2024.130287
  17. Yoga Indra Eniya Raveendran, Vijaykumar Krishnan, Martin Britto Dhas Sathiyadhas Amalapushpam, and Vigneashwari Balasubramanian, Investigation of hawleyite-type cadmium sulfide under the influence of acoustic shockwaves, Z. Phys. Chem. 2025. https://doi.org/10.1515/zpch-2025-0101
  18. Boping Yang, Junjie Cang, Zhiling Li, Jian Chen, Nanocrystals as performance-boosting materials for solar cells, Nanoscale Adv., 2024, 6, 1331. https://doi.org/10.1039/D3NA01063E
  19. A. Grzechnik, K. Friese, Pressure-induced orthorhombic structure of PbS, J. Phys. Condens. Matter. 2010, 22, 095402. https://doi.org/10.1088/0953-8984/22/9/095402
  20. P. Bhambhani, N. Munjal, G. Sharma, V. Vyas, B.K. Sharma, First-principles study of B1 to B2 phase transition in PbS, J. Phys. Conf. 2012, 377. https://doi.org/10.1088/1742-6596/377/1/012068
  21. S.J. Heo, S. Yoon, S.H. Oh, D.H. Yoon, H.J. Kim, Influence of high-pressure treatment on charge carrier transport in PbS colloidal quantum dot solids, Nanoscale. 2014, 6, 903-907. https://doi.org/10.1088/1742-6596/377/1/012068
  22. H. Zhang, G. Zhang, J. Wang et al., Structural and electrical transport properties of PbS quantum dots under high pressure, Journal of Alloys and Compounds, 2021, 857, 157482, https://doi.org/10.1016/j.jallcom.2020.157482
  23. Kim, K., Sakthivel, S., Sahadevan, J., Sivaprakash, P., & Kim, I. Effect of Shock Wave Exposure on Structural, Optical and Magnetic Properties of Lead Sulfide Nanoparticles, Journal of the Korean Society of Visualization, 2024, 22(1), 18-27.
  24. Oviya, S., Bincy, F. I. M., Kumar, R. S., Kannappan, P., Kim, I., & Dhas, S. A. M. B, Optimising the photocatalytic degradation efficiency of bismuth sulphide: widening visible light absorption via acoustic shock wave exposure. Materials Research Innovations, 2025, 29(6), 411-422. https://doi.org/10.1080/14328917.2025.2478410
  25. Oviya Sekar, F. Irine Maria Bincy, Raju Suresh Kumar, Kannappan Perumal, Ikhyun Kim and S. A. Martin Britto Dhas, Reversible phase transition and tunable band gap in zinc telluride induced by acoustic shock exposure, Dalton Trans., 2025,54, 3188-3206. https://doi.org/10.1039/D4DT03393K
  26. Oviya Sekar, F. Irine Maria Bincy, Ikhyun Kim, and S.A. Martin Britto Dhas, Acoustic shock-Engineered CaO Nanoparticles from Egg shells: Dual enhancement of Photocatalytic and Anitbacterialproperties, Chemistry Select, 10 (41), 2025. https://doi.org/10.1002/slct.202503601
  27. H.S. Aziz, S. Rasheed, R.A. Khan, A. Rahim, J. Nisar, S.M. Shah, F. Iqbal, A.R. Khan. Evaluation of electrical, dielectric and magnetic characteristics of Al-La doped nickel spinel ferrites, RSC Adv. 2016, 6,6589. https://doi.org/10.1039/C5RA20981A
  28. T J B Holland and S A T Redfern,Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine 61: 65-77 (1997). https://doi.org/10.1180/minmag.1997.061.404.07
  29. Z. Su, W. L. Shaw, Y. R. Miao, S. You, D. D. Dlott and K. S, Shock Wave Chemistry in a Metal-Organic Framework, J. Am. Chem. Soc., 2017, 139, 4619-4622. https://doi.org/10.1021/jacs.6b12956
  30. M. El-Hagary, S.H. Moustafa, M.I. Amer, G.M.A. Gad, M. Emam-Ismail, H. Hashem, Linear, non-linear optical properties and magnetic studies of spray pyrolysis nanocrystalline Sn1-xCoxO2 films for multifunctional optoelectronic and spintronic applications, J. Mater. Res. Technol. 2021, 13, 2310-2324. https://doi.org/10.1016/j.jmrt.2021.05.111
  31. F. Irine Maria Bincy, S. Oviya, Raju Suresh Kumar, P. Kannappan, S. Arumugam, Ikhyun Kim & S. A. Martin Britto Dhas (21 Oct 2024): Investigation of bismuth selenide’s structural stability and tunable bandgap under exposure to acoustic shock waves for solar cell and aerospace applications, Mechanics of Advanced Materials and Structures.
  32. Nasiri-Tabirizi B. Thermal treatment effect on structural features of mechano-synthesized fluorapatite-titania nanocomposite: A comparative study. J.Adv.Ceram., 2014, 3:31-42. https://doi.org/10.1007/s40145-014-0090-4
  33. M. Ezzeldien, F.Gami, Z.A.Alrowaili, E.R.Shaaban, M.El-Hagary, The influential role of ITO heat treatment on improving the performance of solar cell n-ITO/p-Si junction: Structural, optical, and electrical characterizations, Mater. Today. Commun. 2022, 30, 103272. https://doi.org/10.1016/j.mtcomm.2022.103272
  34. T. Roisnel, J.R. Carvajal, Win PLOTR, a window tool for powder diffraction pattern analysis, Mater. Sci. Forum 378-381 (2001) 118-123. https://doi.org/10.4028/www.scientific.net/MSF.378-381.118
  35. A. Bohre, O.P. Shrivastava, K. Avasthi, Solid state synthesis and structural refinement of polycrystalline phases: Ca1−2xZr4M2xP6−2xO24 (M=Mo, x = 0.1 and 0.3), Arabian J. Chem. 2016, 9, 736-744. https://doi.org/10.1016/j.arabjc.2013.04.008
  36. Haiwa Zhang, Guozhao Zhang, Jia Wang, Qinglin Wang, Hongyang Zhu, Cailong Liu, Structural and electrical transport properties of PbS quantum dots under high pressure, Journal of Alloys and Compounds, 2021, 857, 15, 157482. https://doi.org/10.1016/j.jallcom.2020.157482
  37. Lijing Yu, Pin Tian, Libin Tang, Qun Hao, Kar Seng Teng, Hefu Zhong, Biao Yue, Haipeng Wang, Shunying Yan, Fast-Response Photodetector Based on Hybrid Bi2Te3/PbS Colloidal Quantum Dots. Nanomaterials 2022, 12, 3212. https://doi.org/10.3390/nano12183212
  38. Chao Liu, Yang Jiang, Jian Huang, and Hongyan Duan, Facile synthesis of colloidal PbS quantum dots, International Journal of Nanoscience, 2012, 11(6), 1240041. https://doi.org/10.1142/S0219581X12400418
  39. Nayely Torres-Gomez, Diana F. Garcia-Gutierrez, Alan R. Lara-Canche, Lizbeth Triana-Cruz, Jesus A. Arizpe-Zapata , Domingo I. Garcia-Gutierrez, Absorption and emission in the visible range by ultra-small PbS quantum dots in the strong quantum confinement regime with S-terminated surfaces capped with diphenylphosphine, Journal of Alloys and Compounds, 2021, 860, 158443. https://doi.org/10.1016/j.jallcom.2020.158443
  40. Shkir, M., Chandekar, K.V., Alshahrani, T., et al. A novel terbium doping effect on physical properties of lead sulfide nanostructures: A facile synthesis and characterization. Journal of Materials Research 35, 2664-2675 (2020). https://doi.org/10.1557/jmr.2020.216
  41. Sajid Ahmad, Ajay Singh, Shovit Bhattacharya, Rantita Basu, Ranu Bhatt, Anil Bohra, K.P. Muthe, S.C. Gadkari, Lead sulphide: Low cost, abundant thermoelectrics, AIP Conf. Proc. 2018, 1942, 110013. https://doi.org/10.1063/1.5028996
  42. Sivakumar Aswathappa, Lidong Dai, S. Sahaya Jude Dhas, S. A. Martin Britto Dhas, Eniya Palaniyasan, Raju Suresh Kumar, and Abdulrahman I. Almansour, Cryst. Growth Des. 2024, 24, 491−498. https://doi.org/10.1021/acs.cgd.3c01180
  43. Sixberth Mlowe, Ginena B. Shombe, Matthew P. Akerman, Egid B. Mubofu, Paul O'Brien, Philani Mashazi, Tebello Nyokong, Neerish Revaprasadu, Morphological influence of deposition routes on lead sulfide thin films, Inorganica Chimica Acta, 2019, Volume 498, 119116, ISSN 0020-1693. https://doi.org/10.1016/j.ica.2019.119116
  44. S. Oviya, F. Irine Maria Bincy, S. Arumugam, K. Kamala Bharathi, Raju Suresh Kumar, P.Kannappan, Ikhyun Kim and S. A. Martin Britto Dhas, Acoustic shock wave-induced phase transition in indium selenide: tuning band gap energy for solar cell applications, Cryst Eng Comm, 2024, 26, 2498-2509. https://doi.org/10.1039/D4CE00012A
  45. P.S. Khiew, S. Radiman, N.M. Huang, Md. Soot Ahmad, Studies on the growth and characterization of CdS and PbS nanoparticles using sugar-ester nonionic water-in-oil microemulsion, J. Cryst. Growth, 2003, 254, 235-243. https://doi.org/10.1016/S0022-0248(03)01175-8
  46. Yu Zhao, Xue-Hong Liao, et al., Synthesis of lead sulfide nanocrystals via microwave and sonochemical methods, Mater. Chem. Phys. 87 (2004) 149-153. https://doi.org/10.1016/j.matchemphys.2004.05.026
  47. Zamin Q. Mamiyev, Narmina O. Balayeva, Preparation and optical studies of PbS nanoparticles, Optical Materials, 2015, Volume 46, Pages 522-525. https://doi.org/10.1016/j.optmat.2015.05.017
  48. L.E. Brus, Electron-electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, J. Chem. Phys. (1984), 80, 4403-4409. https://doi.org/10.1063/1.447218
  49. R. Palomino Merino, O. Portillo Moreno, J.C. Flores Gracia, J. Hernandez Tecorralco, J. Martinez Juarez, A. Moran Torres, E. Rubio Rosas, G. Hernandez Tellez, R. Gutierrez, L.A. Chaltel Lima, PbS nanostructured thin films by in situ Cu-doping, J. Nanoci. Nanotechnol. 2014, 14, 5408-5414. https://doi.org/10.1166/jnn.2014.8664
  50. J.I. Pankove, Optical processes in semiconductors, Prentice Holl, New Jersy, 1971.
  51. E.H.H. Hasabeldaim, H.C. Swart, and R.E. Kroon, “Luminescence and stability of Tb dopedCaF2 nanoparticles”, RSC Adv.13, 2023, 5353-5366. https://doi.org/10.1039/D2RA07897J
  52. Jung-Hsuan Chen, Cheun-Guang Chao, Jong -Chyan Ou, Tzeng-Feng Liu, Growth and characteristics of lead sulfide nanocrystals produced by the porous alumina membrane, Surface Science, 601, 2007, 5142-5147. https://doi.org/10.1016/j.susc.2007.04.228
  53. A.K. Mishra, S. Saha, Synthesis and characterization of PbS nanostructures to compare with bulk, Chalcogenide Letters, Vol.17 (3), 2020, 147-159. https://doi.org/10.15251/CL.2020.173.147
  54. Jing X, Zhou D, Sun R, Zhang Y, Li Y, Li X, Li Q, Song H, Liu B, Enhanced photoluminescence and photo responsiveness of Eu3+ ions doped CsPbCl3 perovskite quantum dots under high pressure. Adv. Funct. Mater. 31, 2021, 2100930-2100940. https://doi.org/10.1002/adfm.202100930
  55. S. A. M. Lima, F. A. Sigoli, M. Jafelicci, and M. R. Davolos, Luminescent properties and lattice defects correlation on zinc oxide, Int. J. Inorg. Mater. 2001. 3, 749. https://doi.org/10.1016/S1466-6049(01)00055-1
  56. S. V. M. Pavana, C. Karthik, R. Ubic, M. S. Ramachandra Rao, and C. Sudakar. Tunable bandgap in BiFeO3 nanoparticles: The role of microstrain and oxygen defects, Appl. Phys. Lett. 2013, 103, 022910. https://doi.org/10.1063/1.4813539
  57. R. Udayabhaskar, B. Karthikeyan, Role of micro-strain and defects on band-gap, fluorescence in near white light emitting Sr doped ZnO nanorods, Appl. Phys. 2014, 116, 094310. https://doi.org/10.1063/1.4893562