Articles
Vol. 1 (2025)
Nanofabricated Materials as Nanobiosensor: A Brief Overview
Department of Chemistry, Kalinga University, Naya Raipur-492101 (CG), India
Department of Microbiology, Kalinga University, Naya Raipur-492101 (CG), India
-
Submitted
-
August 29, 2025
-
Published
-
2025-11-18
Abstract
Nanofabricated materials have become a revolutionary foundation in the creation of nanobiosensors, facilitating the highly sensitive, selective, and quick identification of biological and chemical analytes. Advancements in nanotechnology have enabled the fabrication of materials with precise size, shape, and surface characteristics at the nanoscale, greatly enhancing the efficacy of biosensing devices. Materials include nanowires, nanotubes, quantum dots, graphene, metallic nanoparticles, and thin films possess distinctive electrical, optical, and catalytic characteristics, which are utilized in signal transduction and amplification processes. These tailored nanostructures enhance biomolecule immobilization and stability while facilitating label-free, real-time monitoring with ultra-low detection limits. Nanobiosensors utilizing nanofabricated materials have shown utility in various domains, such as medical diagnostics, environmental monitoring, food safety, and drug development. Furthermore, the integration of microfluidics and wearable devices is propelling the advancement of point-of-care platforms for personalized healthcare. Notwithstanding significant advancements, obstacles including reproducibility, large-scale production, biocompatibility, and regulatory approval persist. This concise summary underscores the significance of nanofabricated materials in the progression of biosensing technologies, accentuating its capacity to transform diagnostics and monitoring systems via shrinking, multiplexing, and improved analytical performance.
References
- Ahmed, M. M., Ganeriwala, P., Savvidou, A., Breen, N., Bhattacharyya, S., & Pathirathna, P. (2025). AI-Driven Differentiation and Quantification of Metal Ions Using ITIES Electrochemical Sensors. Journal of Sensor and Actuator Networks, 14(4), 70. https://doi.org/10.3390/jsan14040070
- Albou, E. M., Abdellaoui, M., Abdaoui, A., & Ait Boughrous, A. (2024). Agricultural practices and their impact on aquatic ecosystems–a mini-review. Ecological Engineering & Environmental Technology, 25. https://doi.org/10.12912/27197050/175652
- Ali, Q., Ahmar, S., Sohail, M. A., Kamran, M., Ali, M., Saleem, M. H., ... & Ali, S. (2021). Research advances and applications of biosensing technology for the diagnosis of pathogens in sustainable agriculture. Environmental Science and Pollution Research, 28(8), 9002-9019.https://doi.org/10.1007/s11356-021-12419-6
- Ali, Q., Ahmar, S., Sohail, M. A., Kamran, M., Ali, M., Saleem, M. H., ... & Ali, S. (2021). Research advances and applications of biosensing technology for the diagnosis of pathogens in sustainable agriculture. Environmental Science and Pollution Research, 28(8), 9002-9019. https://doi.org/10.1007/s11356-021-12419-6
- Ali, Q., Ahmar, S., Sohail, M. A., Kamran, M., Ali, M., Saleem, M. H., ... & Ali, S. (2021). Research advances and applications of biosensing technology for the diagnosis of pathogens in sustainable agriculture. Environmental Science and Pollution Research, 28(8), 9002-9019. https://doi.org/10.1007/s11356-021-12419-6
- Anchondo Páez, J. C., Sánchez, E., Ochoa Chaparro, E. H., Ramírez Estrada, C. A., Franco Lagos, C. L., Patiño Cruz, J. J., & Monge, A. Á. (2025). Enzymatic Nanobiosensors in Precision Agriculture: Methods and Applications. In Nanobiosensors for Crop Monitoring and Precision Agriculture (pp. 85-110). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-96-8335-2_5
- Antiochia, R. (2020). Nanobiosensors as new diagnostic tools for SARS, MERS and COVID-19: from past to perspectives. Microchimica Acta, 187(12), 639. https://doi.org/10.1007/s00604-020-04615-x
- Bahadur, F. T., Shah, S. R., &Nidamanuri, R. R. (2023). Applications of remote sensing vis-à-vis machine learning in air quality monitoring and modelling: a review. Environmental Monitoring and Assessment, 195(12), 1502. https://doi.org/10.1007/s10661-023-12001-2
- Bala, M., & Khanna, V. (2025). Comparative analysis of nanomaterials and artificial intelligence for sustainable nutrient management in soil. In Functionalized Cellulose Materials: Sustainable Manufacturing and Applications (pp. 137-158). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-76953-5_6
- Barmpakos, D., Apostolakis, A., Jaber, F., Aidinis, K., & Kaltsas, G. (2025). Recent Advances in Paper-Based Electronics: Emphasis on Field-Effect Transistors and Sensors. Biosensors, 15(5), 324. https://doi.org/10.3390/bios15050324
- Buledi, J. A., Amin, S., Haider, S. I., Bhanger, M. I., &Solangi, A. R. (2021). A review on detection of heavy metals from aqueous media using nanomaterial-based sensors. Environmental Science and Pollution Research, 28(42), 58994-59002. https://doi.org/10.1007/s11356-020-07865-7
- Chaudhary, M., Verma, S., Kumar, A., Basavaraj, Y. B., Tiwari, P., Singh, S., ... & Singh, S. P. (2021). Graphene oxide based electrochemical immunosensor for rapid detection of groundnut bud necrosis orthotospovirus in agricultural crops. Talanta, 235, 122717. https://doi.org/10.1016/j.talanta.2021.122717
- Cheng, H., Xu, H., McClements, D. J., Chen, L., Jiao, A., Tian, Y., ... & Jin, Z. (2022). Recent advances in intelligent food packaging materials: Principles, preparation and applications. Food Chemistry, 375, 131738. https://doi.org/10.1016/j.foodchem.2021.131738
- Delaeter, C., Spilmont, N., Bouchet, V. M., &Seuront, L. (2022). Plastic leachates: Bridging the gap between a conspicuous pollution and its pernicious effects on marine life. Science of The Total Environment, 826, 154091. https://doi.org/10.1016/j.scitotenv.2022.154091
- Deng, X., Mehta, A., Xiao, B., Chaudhuri, K. R., Tan, E. K., & Tan, L. C. (2025). Parkinson's disease subtypes: approaches and clinical implications. Parkinsonism & Related Disorders, 130, 107208. https://doi.org/10.1016/j.parkreldis.2024.107208
- Dhatariya, K. (2017). Blood ketones: measurement, interpretation, limitations, and utility in the management of diabetic ketoacidosis. The review of diabetic studies: RDS, 13(4), 217. https://doi.org/10.1900/RDS.2016.13.217
- Dragoev, S. G. (2024). Lipid peroxidation in muscle foods: Impact on quality, safety and human health. Foods, 13(5), 797. https://doi.org/10.3390/foods13050797
- Dyussembayev, K., Sambasivam, P., Bar, I., Brownlie, J. C., Shiddiky, M. J., & Ford, R. (2021). Biosensor technologies for early detection and quantification of plant pathogens. Frontiers in Chemistry, 9, 636245. https://doi.org/10.3389/fchem.2021.636245
- El-Chaghaby, G. A., & Rashad, S. (2023). Nanosensors in agriculture: applications, prospects, and challenges. Handbook of nanosensors: materials and technological applications, 1-29. https://doi.org/10.1007/978-3-031-16338-8_52-1
- Fanijo, S., Hanson, U., Akindahunsi, T., Abijo, I., &Dawotola, T. B. (2023). Artificial intelligence-powered analysis of medical images for early detection of neurodegenerative diseases. World Journal of Advanced Research and Reviews, 19(2), 1578-1587. https://doi.org/10.30574/wjarr.2023.19.2.1432
- Feng, C., Xu, Q., Qiu, X., Jin, Y. E., Ji, J., Lin, Y., ... & Wang, G. (2021). Evaluation and application of machine learning-based retention time prediction for suspect screening of pesticides and pesticide transformation products in LC-HRMS. Chemosphere, 271, 129447. https://doi.org/10.1016/j.chemosphere.2020.129447
- García-Mesa, J. C., Montoro-Leal, P., Maireles-Rivas, S., Guerrero, M. L., & Alonso, E. V. (2021). Sensitive determination of mercury by magnetic dispersive solid-phase extraction combined with flow-injection-cold vapour-graphite furnace atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 36(5), 892-899. https://doi.org/10.1039/D0JA00516A
- Gavrilaș, S., Ursachi, C. Ș., Perța-Crișan, S., & Munteanu, F. D. (2022). Recent trends in biosensors for environmental quality monitoring. Sensors, 22(4), 1513. https://doi.org/10.3390/s22041513
- Gerace, E., Mancuso, G., Midiri, A., Poidomani, S., Zummo, S., & Biondo, C. (2022). Recent advances in the use of molecular methods for the diagnosis of bacterial infections. Pathogens, 11(6), 663. https://doi.org/10.3390/pathogens11060663
- Giepmans, B. N., Adams, S. R., Ellisman, M. H., & Tsien, R. Y. (2006). The fluorescent toolbox for assessing protein location and function. science, 312(5771), 217-224. https://doi.org/10.1126/science.1124618
- Givanoudi, S., Heyndrickx, M., Depuydt, T., Khorshid, M., Robbens, J., & Wagner, P. (2023). A review on bio-and chemosensors for the detection of biogenic amines in food safety applications: the status in 2022. Sensors, 23(2), 613. https://doi.org/10.3390/s23020613
- Gonçalves, J., Díaz, I., Torres-Franco, A., Rodríguez, E., da Silva, P. G., Mesquita, J. R., ... & Garcia-Encina, P. A. (2023). Microbial contamination of environmental waters and wastewater: Detection methods and treatment technologies. In Modern approaches in waste bioremediation: Environmental microbiology (pp. 461-483). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-24086-7_22
- Gu, Y., Zhang, J., Zhao, X., Nie, W., Xu, X., Liu, M., & Zhang, X. (2024). Olfactory dysfunction and its related molecular mechanisms in Parkinson’s disease. Neural regeneration research, 19(3), 583-590. https://doi.org/10.4103/1673-5374.380875
- Hirsch, I. B. (2015). Glycemic variability and diabetes complications: does it matter? Of course it does!. Diabetes care, 38(8), 1610-1614. https://doi.org/10.2337/dc14-2898
- Huang, T., Li, J., Chen, H., Sun, H., Jang, D. W., Alam, M. M., ... & Gao, Z. (2024). Rapid miRNA detection enhanced by exponential hybridization chain reaction in graphene field-effect transistors. Biosensors and Bioelectronics, 266, 116695. https://doi.org/10.1016/j.bios.2024.116695
- Igwaran, A., Kayode, A. J., Moloantoa, K. M., Khetsha, Z. P., &Unuofin, J. O. (2024). Cyanobacteria harmful algae blooms: causes, impacts, and risk management. Water, Air, & Soil Pollution, 235(1), 71. https://doi.org/10.1007/s11270-023-06782-y
- Javaid, S., Saeed, N., Qadir, Z., Fahim, H., He, B., Song, H., & Bilal, M. (2023). Communication and control in collaborative UAVs: Recent advances and future trends. IEEE Transactions on Intelligent Transportation Systems, 24(6), 5719-5739. https://doi.org/10.1109/TITS.2023.3248841
- Kabiraz, M. P., Majumdar, P. R., Mahmud, M. C., Bhowmik, S., & Ali, A. (2023). Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e15482
- Kaloo, I., Naqash, S., Majid, D., Makroo, H. A., & Dar, B. N. (2024). Traditional analytical methods in food industry: Current challenges and issues in food analysis. Green Chemistry in Food Analysis, 1-22. https://doi.org/10.1016/B978-0-443-18957-9.00008-0
- Kang, H., Wang, X., Guo, M., Dai, C., Chen, R., Yang, L., ... & Wei, D. (2021). Ultrasensitive detection of SARS-CoV-2 antibody by graphene field-effect transistors. Nano Letters, 21(19), 7897-7904. https://doi.org/10.1021/acs.nanolett.1c00837
- Khalkho, B. R., Saha, A., Sahu, B., & Deb, M. K. (2021). Simple and cost effective polymer modified gold nanoparticles based on colorimetric determination of l-cysteine in food samples. Journal of Ravishankar University, 34(1), 41-57. https://doi.org/10.52228/JRUB.2021-34-1-6
- Khan, M. Z. H. (2022). Recent biosensors for detection of antibiotics in animal derived food. Critical Reviews in Analytical Chemistry, 52(4), 780-790. https://doi.org/10.1080/10408347.2020.1828027
- Khan, N. S., Pradhan, D., Choudhary, S., Saxena, P., Poddar, N. K., & Jain, A. K. (2021). Immunoassay-based approaches for development of screening of chlorpyrifos. Journal of Analytical Science and Technology, 12(1), 32. https://doi.org/10.1186/s40543-021-00282-6
- Khatibi, S. A., Hamidi, S., &Siahi-Shadbad, M. R. (2021). Current trends in sample preparation by solid-phase extraction techniques for the determination of antibiotic residues in foodstuffs: a review. Critical reviews in food science and nutrition, 61(20), 3361-3382. https://doi.org/10.1080/10408398.2020.1798349
- Kudreyeva, L., Kanysh, F., Sarsenbayeva, A., Abu, M., Kamysbayev, D., &Kedelbayeva, K. (2025). HER-2-Targeted Electrochemical Sensors for Breast Cancer Diagnosis: Basic Principles, Recent Advancements, and Challenges. Biosensors, 15(4), 210. https://doi.org/10.3390/bios15040210
- Kulkarni, M. B., Ayachit, N. H., & Aminabhavi, T. M. (2022). Recent advancements in nanobiosensors: current trends, challenges, applications, and future scope. Biosensors, 12(10), 892. https://doi.org/10.3390/bios12100892
- Kumar, H., Dhalaria, R., Guleria, S., Cimler, R., Prerna, P., Dhanjal, D. S., ... &Kuča, K. (2024). Immunosensors in food, health, environment, and agriculture: a review. Environmental Chemistry Letters, 22(5), 2573-2605. https://doi.org/10.1007/s10311-024-01745-z
- Kundu, M., Krishnan, P., Chobhe, K. A., Manjaiah, K. M., Pant, R. P., & Chawla, G. (2022). Fabrication of electrochemical nanosensor for detection of nitrate content in soil extract. Journal of Soil Science and Plant Nutrition, 22(3), 2777-2792. https://doi.org/10.1007/s42729-022-00845-5
- Li, R. X., Ma, Y. H., Tan, L., & Yu, J. T. (2022). Prospective biomarkers of Alzheimer’s disease: a systematic review and meta-analysis. Ageing research reviews, 81, 101699. https://doi.org/10.1016/j.arr.2022.101699
- Li, Z., Hou, S., Zhang, H., Song, Q., Wang, S., & Guo, H. (2023). Recent advances in fluorescent and colorimetric sensing for volatile organic amines and biogenic amines in food. Advanced Agrochem, 2(1), 79-87. https://doi.org/10.1016/j.aac.2023.02.001
- Li, Z., Liu, Y., Chen, X., Wang, Y., Niu, H., Li, F., ... & Li, D. (2023). Affinity-based analysis methods for the detection of aminoglycoside antibiotic residues in animal-derived foods: a review. Foods, 12(8), 1587. https://doi.org/10.3390/foods12081587
- Liao, C., Shi, J., Zhang, M., Dalapati, R., Tian, Q., Chen, S., ... & Zang, L. (2021). Optical chemosensors for the gas phase detection of aldehydes: mechanism, material design, and application. Materials Advances, 2(19), 6213-6245. https://doi.org/10.1039/D1MA00341K
- Lin, H., Jiang, H., Adade, S. Y. S. S., Kang, W., Xue, Z., Zareef, M., & Chen, Q. (2023). Overview of advanced technologies for volatile organic compounds measurement in food quality and safety. Critical Reviews in Food Science and Nutrition, 63(26), 8226-8248. https://doi.org/10.1080/10408398.2022.2056573
- Lin, R., Brown, F., James, S., Jones, J., & Ekinci, E. (2021). Continuous glucose monitoring: a review of the evidence in type 1 and 2 diabetes mellitus. Diabetic Medicine, 38(5), e14528. https://doi.org/10.1111/dme.14528
- Lovynska, V., Bayat, B., Bol, R., Moradi, S., Rahmati, M., Raj, R., ... &Montzka, C. (2024). Monitoring heavy metals and metalloids in soils and vegetation by remote sensing: A review. Remote Sensing, 16(17), 3221.
- https://doi.org/10.3390/rs16173221
- Mahajan, P., Khanna, V., Singh, A., & Singh, K. (2024). Advances in Nanomaterial-Based Biosensors for Heavy Metal Detection and Remediation in Soil. Journal of The Electrochemical Society, 171(11), 117527. https://doi.org/10.1149/1945-7111/ad9413
- Mansoor, S., Iqbal, S., Popescu, S. M., Kim, S. L., Chung, Y. S., & Baek, J. H. (2025). Integration of smart sensors and IOT in precision agriculture: trends, challenges and future prospectives. Frontiers in Plant Science, 16, 1587869. https://doi.org/10.3389/fpls.2025.1587869
- Mansoor, S., Iqbal, S., Popescu, S. M., Kim, S. L., Chung, Y. S., & Baek, J. H. (2025). Integration of smart sensors and IOT in precision agriculture: trends, challenges and future prospectives. Frontiers in Plant Science, 16, 1587869. https://doi.org/10.3389/fpls.2025.1587869
- Mirres, A. C. D. M., Silva, B. E. P. D. M. D., Tessaro, L., Galvan, D., Andrade, J. C. D., Aquino, A., ... & Conte-Junior, C. A. (2022). Recent advances in nanomaterial-based biosensors for pesticide detection in foods. Biosensors, 12(8), 572. https://doi.org/10.3390/bios12080572
- Moses, J. C., Adibi, S., Wickramasinghe, N., Nguyen, L., Angelova, M., & Islam, S. M. S. (2023). Non-invasive blood glucose monitoring technology in diabetes management. Mhealth, 10, 9. https://doi.org/10.21037/mhealth-23-9
- Mostaccio, A., Bianco, G. M., Marrocco, G., &Occhiuzzi, C. (2023). RFID technology for food industry 4.0: A review of solutions and applications. IEEE Journal of Radio Frequency Identification, 7, 145-157. https://doi.org/10.1109/JRFID.2023.3278722
- Muthukumaran, M. (2022). Advances in bioremediation of nonaqueous phase liquid pollution in soil and water. In Biological Approaches to Controlling Pollutants (pp. 191-231). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-824316-9.00006-9
- Nadporozhskaya, M., Kovsh, N., Paolesse, R., &Lvova, L. (2022). Recent advances in chemical sensors for soil analysis: a review. Chemosensors, 10(1), 35. https://doi.org/10.3390/chemosensors10010035
- Nagasubramanian, G., Sakthivel, R. K., Patan, R., Sankayya, M., Daneshmand, M., &Gandomi, A. H. (2021). Ensemble classification and IoT-based pattern recognition for crop disease monitoring system. IEEE Internet of Things Journal, 8(16), 12847-12854. https://doi.org/10.1109/JIOT.2021.3072908
- Nagpal, T., Yadav, V., Khare, S. K., Siddhanta, S., & Sahu, J. K. (2023). Monitoring the lipid oxidation and fatty acid profile of oil using algorithm-assisted surface-enhanced Raman spectroscopy. Food Chemistry, 428, 136746. https://doi.org/10.1016/j.foodchem.2023.136746
- Naresh, V., & Lee, N. (2021). A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors, 21(4), 1109. https://doi.org/10.3390/s21041109
- Ndraha, N., Lin, H. Y., Tsai, S. K., Hsiao, H. I., & Lin, H. J. (2023). The Rapid Detection of Salmonella enterica, Listeria monocytogenes, and Staphylococcus aureus via polymerase chain reaction combined with magnetic beads and Capillary Electrophoresis. Foods, 12(21), 3895. https://doi.org/10.3390/foods12213895
- Novais, C., Molina, A. K., Abreu, R. M., Santo-Buelga, C., Ferreira, I. C., Pereira, C., & Barros, L. (2022). Natural food colorants and preservatives: A review, a demand, and a challenge. Journal of agricultural and food chemistry, 70(9), 2789-2805. https://doi.org/10.1021/acs.jafc.1c07533
- Ossenkoppele, R., van der Kant, R., & Hansson, O. (2022). Tau biomarkers in Alzheimer's disease: towards implementation in clinical practice and trials. The Lancet Neurology, 21(8), 726-734. https://doi.org/10.1016/S1474-4422(22)00168-5
- Owen, S. M., Yee, L. H., & Maher, D. T. (2024). Revisiting Atmospheric Oxidation Kinetics of Nitrogen Oxides: The Use of Low-Cost Electrochemical Sensors to Measure Reaction Kinetics. Reactions, 5(4), 789-799. https://doi.org/10.3390/reactions5040040
- Parameswari, P., Belagalla, N., Singh, B. V., Abhishek, G. J., Rajesh, G. M., Katiyar, D., ... & Paul, S. (2024). Nanotechnology-based sensors for real-time monitoring and assessment of soil health and quality: A review. Asian Journal of Soil Science and Plant Nutrition, 10(2), 157-173. https://doi.org/10.9734/ajsspn/2024/v10i2272
- Qi, H., Zhao, X., Xu, Y., Yang, L., Liu, J., & Chen, K. (2024). Rapid photoacoustic exhaust gas analyzer for simultaneous measurement of nitrogen dioxide and sulfur dioxide. Analytical Chemistry, 96(13), 5258-5264. https://doi.org/10.1021/acs.analchem.3c05936
- Rashid, A., Schutte, B. J., Ulery, A., Deyholos, M. K., Sanogo, S., Lehnhoff, E. A., & Beck, L. (2023). Heavy metal contamination in agricultural soil: environmental pollutants affecting crop health. Agronomy, 13(6), 1521. https://doi.org/10.3390/agronomy13061521
- Rawat, R., Roy, S., Goswami, T., Mirsafi, F. S., Ismael, M., Leissner, T., ... & Mathur, A. (2025). Aptamer-enhanced ultrasensitive electrochemical detection of HER-2 in breast cancer diagnosis using ZnO tetrapod-K4PTC nanohybrids. Scientific Reports, 15(1), 17173. https://doi.org/10.1038/s41598-025-88335-3
- Rotake, D. R., Anjankar, S. C., & Singh, S. G. (2025). Cost-effective chemiresistive biosensor with MWCNT-ZnO nanofibers for early detection of tuberculosis (TB) lipoarabinomannan (LAM) antigen. Nanotechnology, 36(15). (PubMed) https://doi.org/10.1016/j.aca.2025.344092
- Saha, A. (2024). Polymer nanocomposites: a review on recent advances in the field of green polymer nanocomposites. Current Nanoscience, 20(6), 706-716. https://doi.org/10.2174/0115734137274950231113050300
- Saha, A., Khalkho, B. R., & Deb, M. K. (2021). Au–Ag core–shell composite nanoparticles as a selective and sensitive plasmonic chemical probe for L-cysteine detection in Lens culinaris (lentils). RSC advances, 11(33), 20380-20390. https://doi.org/10.1039/D1RA01824H
- Saha, A., Kurrey, R., & Deb, M. K. (2024). Resin bound gold nanocomposites assisted SE/ATR-FTIR spectroscopy for detection of pymetrozine insecticide in vegetable samples. Heliyon, 10(18). https://doi.org/10.1016/j.heliyon.2024.e37856
- Saha, A., Kurrey, R., Deb, M. K., & Verma, S. K. (2021). Resin immobilized gold nanocomposites assisted surface enhanced infrared absorption (SEIRA) spectroscopy for improved surface assimilation of methylene blue from aqueous solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 262, 120144. https://doi.org/10.1016/j.saa.2021.120144
- Shaalan, N. M., Ahmed, F., Saber, O., & Kumar, S. (2022). Gases in food production and monitoring: Recent advances in target chemiresistive gas sensors. Chemosensors, 10(8), 338. https://doi.org/10.3390/chemosensors10080338
- Shashank, A., Gupta, A. K., Singh, S., & Ranjan, R. (2021). Biogenic amines (BAs) in meat products, regulatory policies, and detection methods. Current Nutrition & Food Science, 17(9), 995-1005. https://doi.org/10.2174/1573401317666210222105100
- Siddiqui, S. A., Singh, S., Bahmid, N. A., & Sasidharan, A. (2024). Applying innovative technological interventions in the preservation and packaging of fresh seafood products to minimize spoilage-A systematic review and meta-analysis. Heliyon, 10(8). https://doi.org/10.1016/j.heliyon.2024.e29066
- Singh, R. P. (2011). Prospects of nanobiomaterials for biosensing. International journal of electrochemistry, 2011(1), 125487. https://doi.org/10.4061/2011/125487
- Singh, S., Paswan, S. K., Kumar, P., Singh, R. K., & Kumar, L. (2023). Nanomaterials based sensors for detecting key pathogens in food and water: developments from recent decades. In Environmental applications of microbial nanotechnology (pp. 65-80). Elsevier. https://doi.org/10.1016/B978-0-323-91744-5.00003-5
- Sinha, S., Karbhal, I., Deb, M. K., Saha, A., Manikpuri, S., Chandrawanshi, N. K., ... & Nayan, R. (2024). Multifunctional silver nanoparticles decorated N, S co-doped graphene as a sensitive colorimetric probe for L-cysteine detection and as an antibacterial agent. Inorganic Chemistry Communications, 169, 113044. https://doi.org/10.1016/j.inoche.2024.113044
- Sinha, S., Karbhal, I., Deb, M. K., Saha, A., Nayan, R., Kurrey, R., ... & Shrivas, K. (2023). Nitrogen and sulphur co-doped graphene: a robust material for methylene blue removal. Carbon Trends, 10, 100248. https://doi.org/10.1016/j.cartre.2023.100248
- Soldatkin, O. O., Soldatkina, O. V., Piliponskiy, I. I., Rieznichenko, L. S., Gruzina, T. G., Dybkova, S. M., ... & Soldatkin, A. P. (2022). Application of gold nanoparticles for improvement of analytical characteristics of conductometric enzyme biosensors. Applied Nanoscience, 12(4), 995-1003. https://doi.org/10.1007/s13204-021-01807-6
- Sousa, T. A., Almeida, N. B., Santos, F. A., Filgueiras, P. S., Corsini, C. A., Lacerda, C. M., ... &Plentz, F. (2024). Ultrafast and highly sensitive detection of SARS-CoV-2 spike protein by field-effect transistor graphene-based biosensors. Nanotechnology, 35(42), 425503. https://doi.org/10.1088/1361-6528/ad67e8
- Sridhar, A., Kapoor, A., Kumar, P. S., Ponnuchamy, M., Sivasamy, B., & Vo, D. V. N. (2022). Lab-on-a-chip technologies for food safety, processing, and packaging applications: A review. Environmental Chemistry Letters, 20(1), 901-927. https://doi.org/10.1007/s10311-021-01342-4
- Sun, M., Wang, S., Liang, Y., Wang, C., Zhang, Y., Liu, H., ... & Han, L. (2025). Flexible graphene field-effect transistors and their application in flexible biomedical sensing. Nano-Micro Letters, 17(1), 34. https://doi.org/10.1007/s40820-024-01534-x
- Sun, M., Yu, Z., Wang, S., Qiu, J., Huang, Y., Chen, X., ... & Han, L. (2025). Universal Amplification-Free RNA Detection by Integrating CRISPR-Cas10 with Aptameric Graphene Field-Effect Transistor. Nano-Micro Letters, 17(1), 1-19. https://doi.org/10.1007/s40820-025-01730-3
- Sun, M., Zhang, C., Lu, S., Mahmood, S., Wang, J., Sun, C., ... & Liu, H. (2024). Recent advances in graphene field‐effect transistor toward biological detection. Advanced Functional Materials, 34(44), 2405471. https://doi.org/10.1002/adfm.202405471
- Tang, S., & Hewlett, I. (2010). Nanoparticle-based Immunoassays for Sensitive and Early Detection of Human Immunodeficiency Type 1 Capsid (p24) Antigen. Journal of Infectious Diseases, 201(suppl_1), S59-S64. (pmc.ncbi.nlm.nih.gov) https://doi.org/10.1086/650386
- Tvarozek, V., Hianik, T., Novotny, I., Rehacek, V., Ziegler, W., Ivanic, R., & Andel, M. (1998). Thin films in biosensors. Vacuum, 50(3-4), 251-262. https://doi.org/10.1016/S0042-207X(98)00050-5
- Tyagi, S., Chaudhary, M., Ambedkar, A. K., Sharma, K., Gautam, Y. K., & Singh, B. P. (2022). Metal oxide nanomaterial-based sensors for monitoring environmental NO 2 and its impact on the plant ecosystem: A review. Sensors & Diagnostics, 1(1), 106-129. https://doi.org/10.1039/D1SD00034A
- Umapathi, R., Kumar, K., Rani, G. M., & Venkatesu, P. (2019). Influence of biological stimuli on the phase behaviour of a biomedical thermoresponsive polymer: A comparative investigation of hemeproteins. Journal of Colloid and Interface Science, 541, 1-11. https://doi.org/10.1016/j.jcis.2019.01.062
- van Oostveen, W. M., & de Lange, E. C. (2021). Imaging techniques in Alzheimer’s disease: a review of applications in early diagnosis and longitudinal monitoring. International journal of molecular sciences, 22(4), 2110. https://doi.org/10.3390/ijms22042110
- Vaye, O., Ngumbu, R. S., & Xia, D. (2022). A review of the application of comprehensive two-dimensional gas chromatography MS-based techniques for the analysis of persistent organic pollutants and ultra-trace level of organic pollutants in environmental samples. Reviews in Analytical Chemistry, 41(1), 63-73. https://doi.org/10.3390/ijms22042110
- Vigersky, R., & Shrivastav, M. (2017). Role of continuous glucose monitoring for type 2 in diabetes management and research. Journal of Diabetes and its Complications, 31(1), 280-287. https://doi.org/10.1016/j.jdiacomp.2016.10.007
- Wang, B., Wang, H., Lu, X., Zheng, X., & Yang, Z. (2023). Recent advances in electrochemical biosensors for the detection of foodborne pathogens: current perspective and challenges. Foods, 12(14), 2795. https://doi.org/10.3390/foods12142795
- Wang, K., Lin, X., Zhang, M., Li, Y., Luo, C., & Wu, J. (2022). Review of electrochemical biosensors for food safety detection. Biosensors, 12(11), 959. https://doi.org/10.3390/bios12110959
- Wang, Y., Wang, B., & Wang, R. (2023). Current status of detection technologies for indoor hazardous air pollutants and particulate matter. Aerosol and Air Quality Research, 23(12), 230193. https://doi.org/10.4209/aaqr.230193
- Wiśniewska, M., &Szyłak-Szydłowski, M. (2022). The application of in situ methods to monitor VOC concentrations in urban areas—a bibliometric analysis and measuring solution review. Sustainability, 14(14), 8815. https://doi.org/10.3390/su14148815
- Yin, H., Cao, Y., Marelli, B., Zeng, X., Mason, A. J., & Cao, C. (2021). Soil sensors and plant wearables for smart and precision agriculture. Advanced Materials, 33(20), 2007764. https://doi.org/10.1002/adma.202007764
- Younes, N., Yassine, H. M., Kourentzi, K., Tang, P., Litvinov, D., Willson, R. C., ... & Nasrallah, G. K. (2024). A review of rapid food safety testing: using lateral flow assay platform to detect foodborne pathogens. CritiCal reviews in Food sCienCe and nutrition, 64(27), 9910-9932. https://doi.org/10.1080/10408398.2023.2217921
- Yuan, H., Li, B., Wei, J., Liu, X., & He, Z. (2023). Ultra-high performance liquid chromatography and gas chromatography coupled to tandem mass spectrometry for the analysis of 32 pyrethroid pesticides in fruits and vegetables: A comparative study. Food Chemistry, 412, 135578. https://doi.org/10.1016/j.foodchem.2023.135578
- Yue, X., Pan, Q., Zhou, J., Ren, H., Peng, C., Wang, Z., & Zhang, Y. (2022). A simplified fluorescent lateral flow assay for melamine based on aggregation induced emission of gold nanoclusters. Food Chemistry, 385, 132670. https://doi.org/10.1016/j.foodchem.2022.132670
- Zdulski, J. A., Rutkowski, K. P., & Konopacka, D. (2024). Strategies to extend the shelf life of fresh and minimally processed fruit and vegetables with edible coatings and modified atmosphere packaging. Applied Sciences, 14(23), 11074. https://doi.org/10.3390/app142311074
- Zhang, Y., Wei, Z., Zhang, J., Chen, C., & Liu, F. (2025). Application of PCR and PCR-derived technologies for the detection of pathogens infecting crops. Physiological and Molecular Plant Pathology, 136, 102589. https://doi.org/10.1016/j.pmpp.2025.102589
- Zhou, B., & Li, X. (2021). The monitoring of chemical pesticides pollution on ecological environment by GIS. Environmental Technology & Innovation, 23, 101506. https://doi.org/10.1016/j.eti.2021.101506
- Zhou, Z., Majeed, Y., Naranjo, G. D., & Gambacorta, E. M. (2021). Assessment for crop water stress with infrared thermal imagery in precision agriculture: A review and future prospects for deep learning applications. Computers and Electronics in Agriculture, 182, 106019. https://doi.org/10.1016/j.compag.2021.106019
- Zhu, A., Ali, S., Jiao, T., Wang, Z., Ouyang, Q., & Chen, Q. (2023). Advances in surface‐enhanced Raman spectroscopy technology for detection of foodborne pathogens. Comprehensive reviews in food science and food safety, 22(3), 1466-1494. https://doi.org/10.1111/1541-4337.13118
- Zouari, M., Campuzano, S., Pingarrón, J. M., &Raouafi, N. (2020). Determination of miRNAs in serum of cancer patients with a label-and enzyme-free voltammetric biosensor in a single 30-min step. Microchimica Acta, 187(8), 444. https://doi.org/10.1007/s00604-020-04400-w
- Zuidema, C., Schumacher, C. S., Austin, E., Carvlin, G., Larson, T. V., Spalt, E. W., ... & Sheppard, L. (2021). Deployment, calibration, and cross-validation of low-cost electrochemical sensors for carbon monoxide, nitrogen oxides, and ozone for an epidemiological study. Sensors, 21(12), 4214. https://doi.org/10.3390/s21124214