Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 1 (2025)

Nanofabricated Materials as Nanobiosensor: A Brief Overview

Submitted
August 29, 2025
Published
2025-11-18

Abstract

Nanofabricated materials have become a revolutionary foundation in the creation of nanobiosensors, facilitating the highly sensitive, selective, and quick identification of biological and chemical analytes. Advancements in nanotechnology have enabled the fabrication of materials with precise size, shape, and surface characteristics at the nanoscale, greatly enhancing the efficacy of biosensing devices. Materials include nanowires, nanotubes, quantum dots, graphene, metallic nanoparticles, and thin films possess distinctive electrical, optical, and catalytic characteristics, which are utilized in signal transduction and amplification processes. These tailored nanostructures enhance biomolecule immobilization and stability while facilitating label-free, real-time monitoring with ultra-low detection limits. Nanobiosensors utilizing nanofabricated materials have shown utility in various domains, such as medical diagnostics, environmental monitoring, food safety, and drug development. Furthermore, the integration of microfluidics and wearable devices is propelling the advancement of point-of-care platforms for personalized healthcare. Notwithstanding significant advancements, obstacles including reproducibility, large-scale production, biocompatibility, and regulatory approval persist. This concise summary underscores the significance of nanofabricated materials in the progression of biosensing technologies, accentuating its capacity to transform diagnostics and monitoring systems via shrinking, multiplexing, and improved analytical performance.

References

  1. Ahmed, M. M., Ganeriwala, P., Savvidou, A., Breen, N., Bhattacharyya, S., & Pathirathna, P. (2025). AI-Driven Differentiation and Quantification of Metal Ions Using ITIES Electrochemical Sensors. Journal of Sensor and Actuator Networks, 14(4), 70. https://doi.org/10.3390/jsan14040070
  2. Albou, E. M., Abdellaoui, M., Abdaoui, A., & Ait Boughrous, A. (2024). Agricultural practices and their impact on aquatic ecosystems–a mini-review. Ecological Engineering & Environmental Technology, 25. https://doi.org/10.12912/27197050/175652
  3. Ali, Q., Ahmar, S., Sohail, M. A., Kamran, M., Ali, M., Saleem, M. H., ... & Ali, S. (2021). Research advances and applications of biosensing technology for the diagnosis of pathogens in sustainable agriculture. Environmental Science and Pollution Research, 28(8), 9002-9019.https://doi.org/10.1007/s11356-021-12419-6
  4. Ali, Q., Ahmar, S., Sohail, M. A., Kamran, M., Ali, M., Saleem, M. H., ... & Ali, S. (2021). Research advances and applications of biosensing technology for the diagnosis of pathogens in sustainable agriculture. Environmental Science and Pollution Research, 28(8), 9002-9019. https://doi.org/10.1007/s11356-021-12419-6
  5. Ali, Q., Ahmar, S., Sohail, M. A., Kamran, M., Ali, M., Saleem, M. H., ... & Ali, S. (2021). Research advances and applications of biosensing technology for the diagnosis of pathogens in sustainable agriculture. Environmental Science and Pollution Research, 28(8), 9002-9019. https://doi.org/10.1007/s11356-021-12419-6
  6. Anchondo Páez, J. C., Sánchez, E., Ochoa Chaparro, E. H., Ramírez Estrada, C. A., Franco Lagos, C. L., Patiño Cruz, J. J., & Monge, A. Á. (2025). Enzymatic Nanobiosensors in Precision Agriculture: Methods and Applications. In Nanobiosensors for Crop Monitoring and Precision Agriculture (pp. 85-110). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-96-8335-2_5
  7. Antiochia, R. (2020). Nanobiosensors as new diagnostic tools for SARS, MERS and COVID-19: from past to perspectives. Microchimica Acta, 187(12), 639. https://doi.org/10.1007/s00604-020-04615-x
  8. Bahadur, F. T., Shah, S. R., &Nidamanuri, R. R. (2023). Applications of remote sensing vis-à-vis machine learning in air quality monitoring and modelling: a review. Environmental Monitoring and Assessment, 195(12), 1502. https://doi.org/10.1007/s10661-023-12001-2
  9. Bala, M., & Khanna, V. (2025). Comparative analysis of nanomaterials and artificial intelligence for sustainable nutrient management in soil. In Functionalized Cellulose Materials: Sustainable Manufacturing and Applications (pp. 137-158). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-76953-5_6
  10. Barmpakos, D., Apostolakis, A., Jaber, F., Aidinis, K., & Kaltsas, G. (2025). Recent Advances in Paper-Based Electronics: Emphasis on Field-Effect Transistors and Sensors. Biosensors, 15(5), 324. https://doi.org/10.3390/bios15050324
  11. Buledi, J. A., Amin, S., Haider, S. I., Bhanger, M. I., &Solangi, A. R. (2021). A review on detection of heavy metals from aqueous media using nanomaterial-based sensors. Environmental Science and Pollution Research, 28(42), 58994-59002. https://doi.org/10.1007/s11356-020-07865-7
  12. Chaudhary, M., Verma, S., Kumar, A., Basavaraj, Y. B., Tiwari, P., Singh, S., ... & Singh, S. P. (2021). Graphene oxide based electrochemical immunosensor for rapid detection of groundnut bud necrosis orthotospovirus in agricultural crops. Talanta, 235, 122717. https://doi.org/10.1016/j.talanta.2021.122717
  13. Cheng, H., Xu, H., McClements, D. J., Chen, L., Jiao, A., Tian, Y., ... & Jin, Z. (2022). Recent advances in intelligent food packaging materials: Principles, preparation and applications. Food Chemistry, 375, 131738. https://doi.org/10.1016/j.foodchem.2021.131738
  14. Delaeter, C., Spilmont, N., Bouchet, V. M., &Seuront, L. (2022). Plastic leachates: Bridging the gap between a conspicuous pollution and its pernicious effects on marine life. Science of The Total Environment, 826, 154091. https://doi.org/10.1016/j.scitotenv.2022.154091
  15. Deng, X., Mehta, A., Xiao, B., Chaudhuri, K. R., Tan, E. K., & Tan, L. C. (2025). Parkinson's disease subtypes: approaches and clinical implications. Parkinsonism & Related Disorders, 130, 107208. https://doi.org/10.1016/j.parkreldis.2024.107208
  16. Dhatariya, K. (2017). Blood ketones: measurement, interpretation, limitations, and utility in the management of diabetic ketoacidosis. The review of diabetic studies: RDS, 13(4), 217. https://doi.org/10.1900/RDS.2016.13.217
  17. Dragoev, S. G. (2024). Lipid peroxidation in muscle foods: Impact on quality, safety and human health. Foods, 13(5), 797. https://doi.org/10.3390/foods13050797
  18. Dyussembayev, K., Sambasivam, P., Bar, I., Brownlie, J. C., Shiddiky, M. J., & Ford, R. (2021). Biosensor technologies for early detection and quantification of plant pathogens. Frontiers in Chemistry, 9, 636245. https://doi.org/10.3389/fchem.2021.636245
  19. El-Chaghaby, G. A., & Rashad, S. (2023). Nanosensors in agriculture: applications, prospects, and challenges. Handbook of nanosensors: materials and technological applications, 1-29. https://doi.org/10.1007/978-3-031-16338-8_52-1
  20. Fanijo, S., Hanson, U., Akindahunsi, T., Abijo, I., &Dawotola, T. B. (2023). Artificial intelligence-powered analysis of medical images for early detection of neurodegenerative diseases. World Journal of Advanced Research and Reviews, 19(2), 1578-1587. https://doi.org/10.30574/wjarr.2023.19.2.1432
  21. Feng, C., Xu, Q., Qiu, X., Jin, Y. E., Ji, J., Lin, Y., ... & Wang, G. (2021). Evaluation and application of machine learning-based retention time prediction for suspect screening of pesticides and pesticide transformation products in LC-HRMS. Chemosphere, 271, 129447. https://doi.org/10.1016/j.chemosphere.2020.129447
  22. García-Mesa, J. C., Montoro-Leal, P., Maireles-Rivas, S., Guerrero, M. L., & Alonso, E. V. (2021). Sensitive determination of mercury by magnetic dispersive solid-phase extraction combined with flow-injection-cold vapour-graphite furnace atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 36(5), 892-899. https://doi.org/10.1039/D0JA00516A
  23. Gavrilaș, S., Ursachi, C. Ș., Perța-Crișan, S., & Munteanu, F. D. (2022). Recent trends in biosensors for environmental quality monitoring. Sensors, 22(4), 1513. https://doi.org/10.3390/s22041513
  24. Gerace, E., Mancuso, G., Midiri, A., Poidomani, S., Zummo, S., & Biondo, C. (2022). Recent advances in the use of molecular methods for the diagnosis of bacterial infections. Pathogens, 11(6), 663. https://doi.org/10.3390/pathogens11060663
  25. Giepmans, B. N., Adams, S. R., Ellisman, M. H., & Tsien, R. Y. (2006). The fluorescent toolbox for assessing protein location and function. science, 312(5771), 217-224. https://doi.org/10.1126/science.1124618
  26. Givanoudi, S., Heyndrickx, M., Depuydt, T., Khorshid, M., Robbens, J., & Wagner, P. (2023). A review on bio-and chemosensors for the detection of biogenic amines in food safety applications: the status in 2022. Sensors, 23(2), 613. https://doi.org/10.3390/s23020613
  27. Gonçalves, J., Díaz, I., Torres-Franco, A., Rodríguez, E., da Silva, P. G., Mesquita, J. R., ... & Garcia-Encina, P. A. (2023). Microbial contamination of environmental waters and wastewater: Detection methods and treatment technologies. In Modern approaches in waste bioremediation: Environmental microbiology (pp. 461-483). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-24086-7_22
  28. Gu, Y., Zhang, J., Zhao, X., Nie, W., Xu, X., Liu, M., & Zhang, X. (2024). Olfactory dysfunction and its related molecular mechanisms in Parkinson’s disease. Neural regeneration research, 19(3), 583-590. https://doi.org/10.4103/1673-5374.380875
  29. Hirsch, I. B. (2015). Glycemic variability and diabetes complications: does it matter? Of course it does!. Diabetes care, 38(8), 1610-1614. https://doi.org/10.2337/dc14-2898
  30. Huang, T., Li, J., Chen, H., Sun, H., Jang, D. W., Alam, M. M., ... & Gao, Z. (2024). Rapid miRNA detection enhanced by exponential hybridization chain reaction in graphene field-effect transistors. Biosensors and Bioelectronics, 266, 116695. https://doi.org/10.1016/j.bios.2024.116695
  31. Igwaran, A., Kayode, A. J., Moloantoa, K. M., Khetsha, Z. P., &Unuofin, J. O. (2024). Cyanobacteria harmful algae blooms: causes, impacts, and risk management. Water, Air, & Soil Pollution, 235(1), 71. https://doi.org/10.1007/s11270-023-06782-y
  32. Javaid, S., Saeed, N., Qadir, Z., Fahim, H., He, B., Song, H., & Bilal, M. (2023). Communication and control in collaborative UAVs: Recent advances and future trends. IEEE Transactions on Intelligent Transportation Systems, 24(6), 5719-5739. https://doi.org/10.1109/TITS.2023.3248841
  33. Kabiraz, M. P., Majumdar, P. R., Mahmud, M. C., Bhowmik, S., & Ali, A. (2023). Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e15482
  34. Kaloo, I., Naqash, S., Majid, D., Makroo, H. A., & Dar, B. N. (2024). Traditional analytical methods in food industry: Current challenges and issues in food analysis. Green Chemistry in Food Analysis, 1-22. https://doi.org/10.1016/B978-0-443-18957-9.00008-0
  35. Kang, H., Wang, X., Guo, M., Dai, C., Chen, R., Yang, L., ... & Wei, D. (2021). Ultrasensitive detection of SARS-CoV-2 antibody by graphene field-effect transistors. Nano Letters, 21(19), 7897-7904. https://doi.org/10.1021/acs.nanolett.1c00837
  36. Khalkho, B. R., Saha, A., Sahu, B., & Deb, M. K. (2021). Simple and cost effective polymer modified gold nanoparticles based on colorimetric determination of l-cysteine in food samples. Journal of Ravishankar University, 34(1), 41-57. https://doi.org/10.52228/JRUB.2021-34-1-6
  37. Khan, M. Z. H. (2022). Recent biosensors for detection of antibiotics in animal derived food. Critical Reviews in Analytical Chemistry, 52(4), 780-790. https://doi.org/10.1080/10408347.2020.1828027
  38. Khan, N. S., Pradhan, D., Choudhary, S., Saxena, P., Poddar, N. K., & Jain, A. K. (2021). Immunoassay-based approaches for development of screening of chlorpyrifos. Journal of Analytical Science and Technology, 12(1), 32. https://doi.org/10.1186/s40543-021-00282-6
  39. Khatibi, S. A., Hamidi, S., &Siahi-Shadbad, M. R. (2021). Current trends in sample preparation by solid-phase extraction techniques for the determination of antibiotic residues in foodstuffs: a review. Critical reviews in food science and nutrition, 61(20), 3361-3382. https://doi.org/10.1080/10408398.2020.1798349
  40. Kudreyeva, L., Kanysh, F., Sarsenbayeva, A., Abu, M., Kamysbayev, D., &Kedelbayeva, K. (2025). HER-2-Targeted Electrochemical Sensors for Breast Cancer Diagnosis: Basic Principles, Recent Advancements, and Challenges. Biosensors, 15(4), 210. https://doi.org/10.3390/bios15040210
  41. Kulkarni, M. B., Ayachit, N. H., & Aminabhavi, T. M. (2022). Recent advancements in nanobiosensors: current trends, challenges, applications, and future scope. Biosensors, 12(10), 892. https://doi.org/10.3390/bios12100892
  42. Kumar, H., Dhalaria, R., Guleria, S., Cimler, R., Prerna, P., Dhanjal, D. S., ... &Kuča, K. (2024). Immunosensors in food, health, environment, and agriculture: a review. Environmental Chemistry Letters, 22(5), 2573-2605. https://doi.org/10.1007/s10311-024-01745-z
  43. Kundu, M., Krishnan, P., Chobhe, K. A., Manjaiah, K. M., Pant, R. P., & Chawla, G. (2022). Fabrication of electrochemical nanosensor for detection of nitrate content in soil extract. Journal of Soil Science and Plant Nutrition, 22(3), 2777-2792. https://doi.org/10.1007/s42729-022-00845-5
  44. Li, R. X., Ma, Y. H., Tan, L., & Yu, J. T. (2022). Prospective biomarkers of Alzheimer’s disease: a systematic review and meta-analysis. Ageing research reviews, 81, 101699. https://doi.org/10.1016/j.arr.2022.101699
  45. Li, Z., Hou, S., Zhang, H., Song, Q., Wang, S., & Guo, H. (2023). Recent advances in fluorescent and colorimetric sensing for volatile organic amines and biogenic amines in food. Advanced Agrochem, 2(1), 79-87. https://doi.org/10.1016/j.aac.2023.02.001
  46. Li, Z., Liu, Y., Chen, X., Wang, Y., Niu, H., Li, F., ... & Li, D. (2023). Affinity-based analysis methods for the detection of aminoglycoside antibiotic residues in animal-derived foods: a review. Foods, 12(8), 1587. https://doi.org/10.3390/foods12081587
  47. Liao, C., Shi, J., Zhang, M., Dalapati, R., Tian, Q., Chen, S., ... & Zang, L. (2021). Optical chemosensors for the gas phase detection of aldehydes: mechanism, material design, and application. Materials Advances, 2(19), 6213-6245. https://doi.org/10.1039/D1MA00341K
  48. Lin, H., Jiang, H., Adade, S. Y. S. S., Kang, W., Xue, Z., Zareef, M., & Chen, Q. (2023). Overview of advanced technologies for volatile organic compounds measurement in food quality and safety. Critical Reviews in Food Science and Nutrition, 63(26), 8226-8248. https://doi.org/10.1080/10408398.2022.2056573
  49. Lin, R., Brown, F., James, S., Jones, J., & Ekinci, E. (2021). Continuous glucose monitoring: a review of the evidence in type 1 and 2 diabetes mellitus. Diabetic Medicine, 38(5), e14528. https://doi.org/10.1111/dme.14528
  50. Lovynska, V., Bayat, B., Bol, R., Moradi, S., Rahmati, M., Raj, R., ... &Montzka, C. (2024). Monitoring heavy metals and metalloids in soils and vegetation by remote sensing: A review. Remote Sensing, 16(17), 3221.
  51. https://doi.org/10.3390/rs16173221
  52. Mahajan, P., Khanna, V., Singh, A., & Singh, K. (2024). Advances in Nanomaterial-Based Biosensors for Heavy Metal Detection and Remediation in Soil. Journal of The Electrochemical Society, 171(11), 117527. https://doi.org/10.1149/1945-7111/ad9413
  53. Mansoor, S., Iqbal, S., Popescu, S. M., Kim, S. L., Chung, Y. S., & Baek, J. H. (2025). Integration of smart sensors and IOT in precision agriculture: trends, challenges and future prospectives. Frontiers in Plant Science, 16, 1587869. https://doi.org/10.3389/fpls.2025.1587869
  54. Mansoor, S., Iqbal, S., Popescu, S. M., Kim, S. L., Chung, Y. S., & Baek, J. H. (2025). Integration of smart sensors and IOT in precision agriculture: trends, challenges and future prospectives. Frontiers in Plant Science, 16, 1587869. https://doi.org/10.3389/fpls.2025.1587869
  55. Mirres, A. C. D. M., Silva, B. E. P. D. M. D., Tessaro, L., Galvan, D., Andrade, J. C. D., Aquino, A., ... & Conte-Junior, C. A. (2022). Recent advances in nanomaterial-based biosensors for pesticide detection in foods. Biosensors, 12(8), 572. https://doi.org/10.3390/bios12080572
  56. Moses, J. C., Adibi, S., Wickramasinghe, N., Nguyen, L., Angelova, M., & Islam, S. M. S. (2023). Non-invasive blood glucose monitoring technology in diabetes management. Mhealth, 10, 9. https://doi.org/10.21037/mhealth-23-9
  57. Mostaccio, A., Bianco, G. M., Marrocco, G., &Occhiuzzi, C. (2023). RFID technology for food industry 4.0: A review of solutions and applications. IEEE Journal of Radio Frequency Identification, 7, 145-157. https://doi.org/10.1109/JRFID.2023.3278722
  58. Muthukumaran, M. (2022). Advances in bioremediation of nonaqueous phase liquid pollution in soil and water. In Biological Approaches to Controlling Pollutants (pp. 191-231). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-824316-9.00006-9
  59. Nadporozhskaya, M., Kovsh, N., Paolesse, R., &Lvova, L. (2022). Recent advances in chemical sensors for soil analysis: a review. Chemosensors, 10(1), 35. https://doi.org/10.3390/chemosensors10010035
  60. Nagasubramanian, G., Sakthivel, R. K., Patan, R., Sankayya, M., Daneshmand, M., &Gandomi, A. H. (2021). Ensemble classification and IoT-based pattern recognition for crop disease monitoring system. IEEE Internet of Things Journal, 8(16), 12847-12854. https://doi.org/10.1109/JIOT.2021.3072908
  61. Nagpal, T., Yadav, V., Khare, S. K., Siddhanta, S., & Sahu, J. K. (2023). Monitoring the lipid oxidation and fatty acid profile of oil using algorithm-assisted surface-enhanced Raman spectroscopy. Food Chemistry, 428, 136746. https://doi.org/10.1016/j.foodchem.2023.136746
  62. Naresh, V., & Lee, N. (2021). A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors, 21(4), 1109. https://doi.org/10.3390/s21041109
  63. Ndraha, N., Lin, H. Y., Tsai, S. K., Hsiao, H. I., & Lin, H. J. (2023). The Rapid Detection of Salmonella enterica, Listeria monocytogenes, and Staphylococcus aureus via polymerase chain reaction combined with magnetic beads and Capillary Electrophoresis. Foods, 12(21), 3895. https://doi.org/10.3390/foods12213895
  64. Novais, C., Molina, A. K., Abreu, R. M., Santo-Buelga, C., Ferreira, I. C., Pereira, C., & Barros, L. (2022). Natural food colorants and preservatives: A review, a demand, and a challenge. Journal of agricultural and food chemistry, 70(9), 2789-2805. https://doi.org/10.1021/acs.jafc.1c07533
  65. Ossenkoppele, R., van der Kant, R., & Hansson, O. (2022). Tau biomarkers in Alzheimer's disease: towards implementation in clinical practice and trials. The Lancet Neurology, 21(8), 726-734. https://doi.org/10.1016/S1474-4422(22)00168-5
  66. Owen, S. M., Yee, L. H., & Maher, D. T. (2024). Revisiting Atmospheric Oxidation Kinetics of Nitrogen Oxides: The Use of Low-Cost Electrochemical Sensors to Measure Reaction Kinetics. Reactions, 5(4), 789-799. https://doi.org/10.3390/reactions5040040
  67. Parameswari, P., Belagalla, N., Singh, B. V., Abhishek, G. J., Rajesh, G. M., Katiyar, D., ... & Paul, S. (2024). Nanotechnology-based sensors for real-time monitoring and assessment of soil health and quality: A review. Asian Journal of Soil Science and Plant Nutrition, 10(2), 157-173. https://doi.org/10.9734/ajsspn/2024/v10i2272
  68. Qi, H., Zhao, X., Xu, Y., Yang, L., Liu, J., & Chen, K. (2024). Rapid photoacoustic exhaust gas analyzer for simultaneous measurement of nitrogen dioxide and sulfur dioxide. Analytical Chemistry, 96(13), 5258-5264. https://doi.org/10.1021/acs.analchem.3c05936
  69. Rashid, A., Schutte, B. J., Ulery, A., Deyholos, M. K., Sanogo, S., Lehnhoff, E. A., & Beck, L. (2023). Heavy metal contamination in agricultural soil: environmental pollutants affecting crop health. Agronomy, 13(6), 1521. https://doi.org/10.3390/agronomy13061521
  70. Rawat, R., Roy, S., Goswami, T., Mirsafi, F. S., Ismael, M., Leissner, T., ... & Mathur, A. (2025). Aptamer-enhanced ultrasensitive electrochemical detection of HER-2 in breast cancer diagnosis using ZnO tetrapod-K4PTC nanohybrids. Scientific Reports, 15(1), 17173. https://doi.org/10.1038/s41598-025-88335-3
  71. Rotake, D. R., Anjankar, S. C., & Singh, S. G. (2025). Cost-effective chemiresistive biosensor with MWCNT-ZnO nanofibers for early detection of tuberculosis (TB) lipoarabinomannan (LAM) antigen. Nanotechnology, 36(15). (PubMed) https://doi.org/10.1016/j.aca.2025.344092
  72. Saha, A. (2024). Polymer nanocomposites: a review on recent advances in the field of green polymer nanocomposites. Current Nanoscience, 20(6), 706-716. https://doi.org/10.2174/0115734137274950231113050300
  73. Saha, A., Khalkho, B. R., & Deb, M. K. (2021). Au–Ag core–shell composite nanoparticles as a selective and sensitive plasmonic chemical probe for L-cysteine detection in Lens culinaris (lentils). RSC advances, 11(33), 20380-20390. https://doi.org/10.1039/D1RA01824H
  74. Saha, A., Kurrey, R., & Deb, M. K. (2024). Resin bound gold nanocomposites assisted SE/ATR-FTIR spectroscopy for detection of pymetrozine insecticide in vegetable samples. Heliyon, 10(18). https://doi.org/10.1016/j.heliyon.2024.e37856
  75. Saha, A., Kurrey, R., Deb, M. K., & Verma, S. K. (2021). Resin immobilized gold nanocomposites assisted surface enhanced infrared absorption (SEIRA) spectroscopy for improved surface assimilation of methylene blue from aqueous solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 262, 120144. https://doi.org/10.1016/j.saa.2021.120144
  76. Shaalan, N. M., Ahmed, F., Saber, O., & Kumar, S. (2022). Gases in food production and monitoring: Recent advances in target chemiresistive gas sensors. Chemosensors, 10(8), 338. https://doi.org/10.3390/chemosensors10080338
  77. Shashank, A., Gupta, A. K., Singh, S., & Ranjan, R. (2021). Biogenic amines (BAs) in meat products, regulatory policies, and detection methods. Current Nutrition & Food Science, 17(9), 995-1005. https://doi.org/10.2174/1573401317666210222105100
  78. Siddiqui, S. A., Singh, S., Bahmid, N. A., & Sasidharan, A. (2024). Applying innovative technological interventions in the preservation and packaging of fresh seafood products to minimize spoilage-A systematic review and meta-analysis. Heliyon, 10(8). https://doi.org/10.1016/j.heliyon.2024.e29066
  79. Singh, R. P. (2011). Prospects of nanobiomaterials for biosensing. International journal of electrochemistry, 2011(1), 125487. https://doi.org/10.4061/2011/125487
  80. Singh, S., Paswan, S. K., Kumar, P., Singh, R. K., & Kumar, L. (2023). Nanomaterials based sensors for detecting key pathogens in food and water: developments from recent decades. In Environmental applications of microbial nanotechnology (pp. 65-80). Elsevier. https://doi.org/10.1016/B978-0-323-91744-5.00003-5
  81. Sinha, S., Karbhal, I., Deb, M. K., Saha, A., Manikpuri, S., Chandrawanshi, N. K., ... & Nayan, R. (2024). Multifunctional silver nanoparticles decorated N, S co-doped graphene as a sensitive colorimetric probe for L-cysteine detection and as an antibacterial agent. Inorganic Chemistry Communications, 169, 113044. https://doi.org/10.1016/j.inoche.2024.113044
  82. Sinha, S., Karbhal, I., Deb, M. K., Saha, A., Nayan, R., Kurrey, R., ... & Shrivas, K. (2023). Nitrogen and sulphur co-doped graphene: a robust material for methylene blue removal. Carbon Trends, 10, 100248. https://doi.org/10.1016/j.cartre.2023.100248
  83. Soldatkin, O. O., Soldatkina, O. V., Piliponskiy, I. I., Rieznichenko, L. S., Gruzina, T. G., Dybkova, S. M., ... & Soldatkin, A. P. (2022). Application of gold nanoparticles for improvement of analytical characteristics of conductometric enzyme biosensors. Applied Nanoscience, 12(4), 995-1003. https://doi.org/10.1007/s13204-021-01807-6
  84. Sousa, T. A., Almeida, N. B., Santos, F. A., Filgueiras, P. S., Corsini, C. A., Lacerda, C. M., ... &Plentz, F. (2024). Ultrafast and highly sensitive detection of SARS-CoV-2 spike protein by field-effect transistor graphene-based biosensors. Nanotechnology, 35(42), 425503. https://doi.org/10.1088/1361-6528/ad67e8
  85. Sridhar, A., Kapoor, A., Kumar, P. S., Ponnuchamy, M., Sivasamy, B., & Vo, D. V. N. (2022). Lab-on-a-chip technologies for food safety, processing, and packaging applications: A review. Environmental Chemistry Letters, 20(1), 901-927. https://doi.org/10.1007/s10311-021-01342-4
  86. Sun, M., Wang, S., Liang, Y., Wang, C., Zhang, Y., Liu, H., ... & Han, L. (2025). Flexible graphene field-effect transistors and their application in flexible biomedical sensing. Nano-Micro Letters, 17(1), 34. https://doi.org/10.1007/s40820-024-01534-x
  87. Sun, M., Yu, Z., Wang, S., Qiu, J., Huang, Y., Chen, X., ... & Han, L. (2025). Universal Amplification-Free RNA Detection by Integrating CRISPR-Cas10 with Aptameric Graphene Field-Effect Transistor. Nano-Micro Letters, 17(1), 1-19. https://doi.org/10.1007/s40820-025-01730-3
  88. Sun, M., Zhang, C., Lu, S., Mahmood, S., Wang, J., Sun, C., ... & Liu, H. (2024). Recent advances in graphene field‐effect transistor toward biological detection. Advanced Functional Materials, 34(44), 2405471. https://doi.org/10.1002/adfm.202405471
  89. Tang, S., & Hewlett, I. (2010). Nanoparticle-based Immunoassays for Sensitive and Early Detection of Human Immunodeficiency Type 1 Capsid (p24) Antigen. Journal of Infectious Diseases, 201(suppl_1), S59-S64. (pmc.ncbi.nlm.nih.gov) https://doi.org/10.1086/650386
  90. Tvarozek, V., Hianik, T., Novotny, I., Rehacek, V., Ziegler, W., Ivanic, R., & Andel, M. (1998). Thin films in biosensors. Vacuum, 50(3-4), 251-262. https://doi.org/10.1016/S0042-207X(98)00050-5
  91. Tyagi, S., Chaudhary, M., Ambedkar, A. K., Sharma, K., Gautam, Y. K., & Singh, B. P. (2022). Metal oxide nanomaterial-based sensors for monitoring environmental NO 2 and its impact on the plant ecosystem: A review. Sensors & Diagnostics, 1(1), 106-129. https://doi.org/10.1039/D1SD00034A
  92. Umapathi, R., Kumar, K., Rani, G. M., & Venkatesu, P. (2019). Influence of biological stimuli on the phase behaviour of a biomedical thermoresponsive polymer: A comparative investigation of hemeproteins. Journal of Colloid and Interface Science, 541, 1-11. https://doi.org/10.1016/j.jcis.2019.01.062
  93. van Oostveen, W. M., & de Lange, E. C. (2021). Imaging techniques in Alzheimer’s disease: a review of applications in early diagnosis and longitudinal monitoring. International journal of molecular sciences, 22(4), 2110. https://doi.org/10.3390/ijms22042110
  94. Vaye, O., Ngumbu, R. S., & Xia, D. (2022). A review of the application of comprehensive two-dimensional gas chromatography MS-based techniques for the analysis of persistent organic pollutants and ultra-trace level of organic pollutants in environmental samples. Reviews in Analytical Chemistry, 41(1), 63-73. https://doi.org/10.3390/ijms22042110
  95. Vigersky, R., & Shrivastav, M. (2017). Role of continuous glucose monitoring for type 2 in diabetes management and research. Journal of Diabetes and its Complications, 31(1), 280-287. https://doi.org/10.1016/j.jdiacomp.2016.10.007
  96. Wang, B., Wang, H., Lu, X., Zheng, X., & Yang, Z. (2023). Recent advances in electrochemical biosensors for the detection of foodborne pathogens: current perspective and challenges. Foods, 12(14), 2795. https://doi.org/10.3390/foods12142795
  97. Wang, K., Lin, X., Zhang, M., Li, Y., Luo, C., & Wu, J. (2022). Review of electrochemical biosensors for food safety detection. Biosensors, 12(11), 959. https://doi.org/10.3390/bios12110959
  98. Wang, Y., Wang, B., & Wang, R. (2023). Current status of detection technologies for indoor hazardous air pollutants and particulate matter. Aerosol and Air Quality Research, 23(12), 230193. https://doi.org/10.4209/aaqr.230193
  99. Wiśniewska, M., &Szyłak-Szydłowski, M. (2022). The application of in situ methods to monitor VOC concentrations in urban areas—a bibliometric analysis and measuring solution review. Sustainability, 14(14), 8815. https://doi.org/10.3390/su14148815
  100. Yin, H., Cao, Y., Marelli, B., Zeng, X., Mason, A. J., & Cao, C. (2021). Soil sensors and plant wearables for smart and precision agriculture. Advanced Materials, 33(20), 2007764. https://doi.org/10.1002/adma.202007764
  101. Younes, N., Yassine, H. M., Kourentzi, K., Tang, P., Litvinov, D., Willson, R. C., ... & Nasrallah, G. K. (2024). A review of rapid food safety testing: using lateral flow assay platform to detect foodborne pathogens. CritiCal reviews in Food sCienCe and nutrition, 64(27), 9910-9932. https://doi.org/10.1080/10408398.2023.2217921
  102. Yuan, H., Li, B., Wei, J., Liu, X., & He, Z. (2023). Ultra-high performance liquid chromatography and gas chromatography coupled to tandem mass spectrometry for the analysis of 32 pyrethroid pesticides in fruits and vegetables: A comparative study. Food Chemistry, 412, 135578. https://doi.org/10.1016/j.foodchem.2023.135578
  103. Yue, X., Pan, Q., Zhou, J., Ren, H., Peng, C., Wang, Z., & Zhang, Y. (2022). A simplified fluorescent lateral flow assay for melamine based on aggregation induced emission of gold nanoclusters. Food Chemistry, 385, 132670. https://doi.org/10.1016/j.foodchem.2022.132670
  104. Zdulski, J. A., Rutkowski, K. P., & Konopacka, D. (2024). Strategies to extend the shelf life of fresh and minimally processed fruit and vegetables with edible coatings and modified atmosphere packaging. Applied Sciences, 14(23), 11074. https://doi.org/10.3390/app142311074
  105. Zhang, Y., Wei, Z., Zhang, J., Chen, C., & Liu, F. (2025). Application of PCR and PCR-derived technologies for the detection of pathogens infecting crops. Physiological and Molecular Plant Pathology, 136, 102589. https://doi.org/10.1016/j.pmpp.2025.102589
  106. Zhou, B., & Li, X. (2021). The monitoring of chemical pesticides pollution on ecological environment by GIS. Environmental Technology & Innovation, 23, 101506. https://doi.org/10.1016/j.eti.2021.101506
  107. Zhou, Z., Majeed, Y., Naranjo, G. D., & Gambacorta, E. M. (2021). Assessment for crop water stress with infrared thermal imagery in precision agriculture: A review and future prospects for deep learning applications. Computers and Electronics in Agriculture, 182, 106019. https://doi.org/10.1016/j.compag.2021.106019
  108. Zhu, A., Ali, S., Jiao, T., Wang, Z., Ouyang, Q., & Chen, Q. (2023). Advances in surface‐enhanced Raman spectroscopy technology for detection of foodborne pathogens. Comprehensive reviews in food science and food safety, 22(3), 1466-1494. https://doi.org/10.1111/1541-4337.13118
  109. Zouari, M., Campuzano, S., Pingarrón, J. M., &Raouafi, N. (2020). Determination of miRNAs in serum of cancer patients with a label-and enzyme-free voltammetric biosensor in a single 30-min step. Microchimica Acta, 187(8), 444. https://doi.org/10.1007/s00604-020-04400-w
  110. Zuidema, C., Schumacher, C. S., Austin, E., Carvlin, G., Larson, T. V., Spalt, E. W., ... & Sheppard, L. (2021). Deployment, calibration, and cross-validation of low-cost electrochemical sensors for carbon monoxide, nitrogen oxides, and ozone for an epidemiological study. Sensors, 21(12), 4214. https://doi.org/10.3390/s21124214